

Motor Control

Contactors, Starters and Brakes . V12-T13-2
Adjustable Frequency AC Drives . V12-T13-72
Synchronous . V12-T13-76
Starters (Medium Voltage). V12-T13-87
Contents
Description Page
Pre 3-StarProduct History Time Line, ReplacementCapabilities, Technology UpgradesV12-T13-4
3-Star
Product History Time Line, Replacement Capabilities, Technology Upgrades V12-T13-5
Citation
Product History Time Line V12-T13-6
Replacement Capabilities V12-T13-7
Type \mathbf{N}Product History Time Line, ReplacementCapabilities, Technology UpgradesV12-T13-22
A200
Product History Time Line, ReplacementCapabilitiesV12-T13-23
Technology Upgrades V12-T13-26
A202
Product History Time Line, ReplacementCapabilitiesV12-T13-33
V201 and V200
Replacement Capabilities V12-T13-36
Freedom
Product Description, Product History Time Line V12-T13-37
Replacement Capabilities V12-T13-38
Technology Upgrades V12-T13-46
IT. Electromechanical NEMAProduct Description, Product History Time Line,Replacement Capabilities, Technology UpgradesV12-T13-47
IT. Electromechanical IECProduct Description, Product History Time Line,Replacement Capabilities, Technology UpgradesV12-T13-48
XT IEC Power Control
Product Description, Product History Time Line, Replacement Capabilities, V12-T13-49
Advantage
Product Description, Product History Time Line,Replacement Capabilities, Technology UpgradesV12-T13-51
Definite PurposeProduct History Time Line, ReplacementCapabilities, Technology UpgradesV12-T13-53
JF Autostarter
Product History Time Line, ReplacementCapabilities, Technology UpgradesV12-T13-56
ME and MD DC Contactors
Product Description, Product History,Product History Time Line, ReplacementCapabilitiesV12-T13-57
Technology Upgrades V12-T13-60
C80 Mill Type DC ContactorsProduct Description, Product History Time Line,Replacement Capabilities, Technology Upgrades

Description

511 AC and DC Brakes

Product Description, Product History Time Line,
Replacement Capabilities, Technology Upgrades . . .V12-T13-63

DPM-Contactor

Product Description, Product History Time Line, Replacement Capabilities, Technology Upgrades . . .V12-T13-65

AVD-Contactor

Product Description, Product History,
Product History Time Line,
Replacement Capabilities, Technology Upgrades . . .V12-T13-66

D-Contactor

Product Description, Product History,
Product History Time Line, Replacement Capabilities, Technology Upgrades

V12-T13-67

Reversing/Assignment Contactors

Product Description, Product History,
Product History Time Line, Replacement
Capabilities, Technology Upgrades
V12-T13-68

P- and S-Contactors

Product Description, Product History, Product History Time Line, Replacement Capabilities, Technology Upgrades V12-T13-69

Overview

Type N Contactor

Citation Starter

Product Description

Cutler-Hammer ${ }^{\oplus}$ Starters and Contactors from Eaton's electrical business were and are designed to control functions of a connected motor by starting, stopping, reversing, regulating and protecting. When functions do not include speed regulation, this device is known as a starter rather than a controller.

Applications for starter functions are fans, pumps, constant horsepower, constant or variable torque machine tools, constant torque metalworking machinery, variable torque and horsepower fans and blowers, constant power heating, lighting, pumps and motors for all types of applications.

Product History

Freedom

The Cutler-Hammer line of contactors and starters dates back to the early 1920s in Milwaukee, WI. Changes in coil construction, making the first moisture-proof vacuum with impregnated coils, were innovations in this line of contactors and starters manufactured before the 3-Star line (now known as the Pre 3-Star). Eutectic alloy overloads were used later in this design with the design change to the 3 -Star line. A few of the new features of the 3-Star line of contactors and starters were the first standard three-coil overload relays, new molding compounds, new metals and cast resin coils.

The Type F magnetic contactor is the first magnetically controlled contactor in our Westinghouse ${ }^{\circledR}$ records. It was open in design, simple in construction and was state-of-the-art due to its magnetically controlled armature. The Type F contactor was replaced by the $\mathrm{DE}-\mathrm{ION}{ }^{\circledR}$ contactor, which featured the Westinghouse trademark DE-ION arc quenching. The DE-ION was followed by the Type DN, Type N and the Type A, today known as the A200. The Type B was developed in the late 1970s and was obsoleted two or three years later. The A200 open control is still a current offering. Prior to 1985, some of the larger sizes (5-9) were known as GCA and GCD.

The Citation line of contactors and starters was introduced in 1968 with many new features: the new Cl nonwearing totally enclosed permanent air gap magnet structure; dual wound magnet coil with plug-in feature; color coded, twin break dust-safe contacts; and straight-through wiring. Although the Citation line was obsoleted in 1997, replacement contact kits, magnet coils and heater coils will continue to be available.

Today, the Freedom ${ }^{\text {TM }}$ contactor, launched in 1986, is the flagship NEMA offering while $\boldsymbol{X T}$ is the IEC offering.

Pre 3-Star
Originally a Cutler-Hammer Product

Size 1 Contactor

Size 2 Contactor

Size 5 Contactor
Parts are no longer available for Pre-3 Star.

Product History Time Line for Pre 3-Star, Bulletin 9586 (1)

Size	1920	1940	1960	1980	2000	Present
Sizes $00-5$						

Replacement Capabilities

There are no replacement parts available. Replace with new contactor or starter.

Technology Upgrades

Size 00-3—Freedom
Sizes 4-5-Freedom
Note
(1) For all NEMA ${ }^{\circledR}$ rated starters, please contact Standard Open Control Aftermarket at 1-800-535-8992.

3-Star
Originally a Cutler-Hammer Product

Typical Size 0—Starter

Typical Size 1-Contactor

Typical Size 5-Starter

Product History Time Line for 3-Star, Bulletin 9560, 9586, 9589, 9591, 9556, 9658, 9736 and 9739 (1)

Replacement Capabilities

There are no replacement parts available. Replace with new contactor or starter.

Technology Upgrades
Sizes 00-3—Freedom
Sizes 4-5-Freedom
Note
(1) For all NEMA rated Bulletin 9586 starters, please contact Standard Open Control Aftermarket
at 1-800-535-8992.

Citation

Originally a Cutler-Hammer Product

Citation Starter and Nameplate

Product History Time Line for Citation A10, A11, A13, A30, A31, A40, A41, A50, A51, A70, A71, A80, A81, B10, B11, B50, B51, B52, C10, C30 and C50

NEMA Size	Series	1965	1970	1975	1980	1985	1990	1995	2000	Present
Size 00	A1		-							
	B1					,				
	C1									
	D1									
Size 0	A1									
Size 1	A1									
Size 2	A1									
	B1									
Size 3	A1									
	B1									
Size 4	A1									
	B1									
Size 5	A1									
Size 6	A1									
	B1									
Size 7	A1									
Size 8	A1									

Note
(1) Although the number " 9 " is not imprinted on the coil, it must be used when ordering. For example, the proper ordering number for a $120 \mathrm{~V}, 60 \mathrm{~Hz}$, AC magnet coil would be 9-1887-1 (refer to the style numbers on Page V12-T13-7).

Replacement Capabilities

Replacement Capabilities-Contacts and Coils

Description	Coil Suffix	Style and P Size 00 Series A1	Numbers Size 00 Series B1	Size 00 Series C1	Size 00 Series D1	Size 0	Size 1	Size 2 Series A1	Size 2 Series B1	Size 3 Series A1	Size 3 Series B1
Contact Kits											
Part number on contactor or starter nameplate											
Two-pole without interlock	-	6-21	(2)	(2)	(2)	6-22	6-23	6-24	6-34	6-25	6-35
Three-pole without interlock	-	6-21-2	(2)	(2)	(2)	6-22-2	6-23-2	6-24-2	6-34-2	6-25-2	6-35-2
Three-pole with interlock	-	6-21-3	(2)	(2)	-	-	-	-	-	-	-
Four-pole without interlock	-	-	-	-	-	6-22-3	6-23-3	-	6-34-3	-	-
Five-pole without interlock	-	-	-	-	-	6-22-4	6-23-4	-	6-34-4	-	-
Magnet Coils											
$120 \mathrm{~V}, 60 \mathrm{~Hz}$ or 110V, 50 Hz	A	9-1945-1	9-2183-1	9-2650-1	9-2823-1	9-1887-1	9-1887-1	9-1889-1	9-2526-1	9-1891-1	9-1889-1
$240 \mathrm{~V}, 60 \mathrm{~Hz}$ or $220 \mathrm{~V}, 50 \mathrm{~Hz}$	B	9-1945-2	9-2183-2	9-2650-2	9-2823-2	9-1887-2	9-1887-2	9-1889-2	9-2526-2	9-1891-2	9-1889-2
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ or $440 \mathrm{~V}, 50 \mathrm{~Hz}$	C	9-1945-3	9-2183-5	9-2650-3	9-2823-3	9-1887-3	9-1887-3	9-1889-3	9-2526-3	9-1891-3	9-1889-3
$600 \mathrm{~V}, 60 \mathrm{~Hz}$ or 550V, 50 Hz	D	9-1945-4	9-2183-19	9-2650-4	9-2823-4	9-1887-4	9-1887-4	9-1889-4	9-2526-4	9-1891-4	9-1889-4
$208 \mathrm{~V}, 60 \mathrm{~Hz}$	E	9-1945-5	9-2183-17	9-2650-5	9-2823-5	9-1887-5	9-1887-5	9-1889-13	9-2526-5	9-1891-13	9-1889-13
$24 \mathrm{~V}, 60 \mathrm{~Hz}$	T	9-1945-8	9-2183-16	9-2650-7	9-2823-18	9-1887-7	9-1887-7	9-1889-20	9-2526-6	9-1891-15	9-1889-20
$380 \mathrm{~V}, 50 \mathrm{~Hz}$	L	9-1945-6	9-2183-3	9-2650-6	9-2421-18 ${ }^{(3)}$	9-1887-8	9-1887-8	9-1889-14	9-2526-7	9-1891-14	9-1889-14
$277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	9-1945-16	9-2183-18	9-2650-13	9-2823-12	9-1887-16	9-1887-16	9-1889-31	9-2526-15	9-1891-26	9-1889-31
$120 \mathrm{Vdc}(4)$	A1	-	-	-	-	9-2024-2	9-2024-2	9-2025-2	9-2626-2	9-2026-2	9-2025-2
$240 \mathrm{Vdc}{ }^{4}$	B1	-	-	-	-	9-2024-1	9-2024-1	9-2025-1	9-2626-1	9-2026-1	9-2025-1
$24 \mathrm{Vdc}{ }^{4}$	T1	-	-	-	-	9-2024-4	9-2024-4	9-2025-4	9-2626-4	9-2026-4	9-2025-4
48 Vdc (4)	W1	-	-	-	-	9-2024-3	9-2024-3	9-2025-3	9-2626-3	9-2026-3	9-2025-3

Replacement Capabilities-Contacts and Coils, continued

Style and Part Numbers											
Description	Coil Suffix	Size 4 Series A1	Size 4 Series B1	Size 5	Size 6 Series A1	Size 6 Series B1	Size 6 Series C1	Size 7 Series A1	Size 7 Series B1	Size 8 Series A1	Size 8 Series B1
Contact Kits											
Part number on contactor or starter nameplate											
Two-pole	-	6-26	6-36-3	6-27	6-28	-	6-601-2	6-28	-	-	-
Three-pole	-	6-26-2	6-36-4	6-27-2	6-28-2	6-570	6-601	6-28-2	6-570	646C829G05	6-571
Magnet Coils											
$120 \mathrm{~V}, 60 \mathrm{~Hz}$ or 110V, 50 Hz	A	9-1891-1	9-1891-1	9-1891-1	9-1875-1	9-2651	9-2698	9-1875-1	9-2651	438C805G12	9-2654
$240 \mathrm{~V}, 60 \mathrm{~Hz}$ or $220 \mathrm{~V}, 50 \mathrm{~Hz}$	B	9-1891-2	9-1891-2	9-1891-2	9-1875-2	9-2651-2	9-2698-2	9-1875-2	9-2651-2	438C805G11	9-2654-2
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ or 440V, 50 Hz	C	9-1891-3	9-1891-3	9-1891-3	9-1875-3	9-2651-3	9-2698-3	9-1875-3	9-2651-3	438C805G10	9-2654-3
$600 \mathrm{~V}, 60 \mathrm{~Hz}$ or 550V, 50 Hz	D	9-1891-4	9-1891-4	9-1891-4	9-1875-4	9-2651-4	9-2698-4	9-1875-4	9-2651-4	-	9-2654-4
$208 \mathrm{~V}, 60 \mathrm{~Hz}$	E	9-1891-13	9-1891-13	9-1891-13	9-1875-14	9-2651-6	9-2698-5	9-1875-14	9-2651-6	438C805G11	9-2654-6
$24 \mathrm{~V}, 60 \mathrm{~Hz}$	T	9-1891-15	9-1891-15	9-1891-15	-	-	-	-	-	-	-
$380 \mathrm{~V}, 50 \mathrm{~Hz}$	L	9-1891-14	9-1891-14	9-1891-14	-	9-2651-5	9-2698-6	-	9-2651-5	438C805G15	9-2654-5
$277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	9-1891-26	9-1891-26	9-1891-26	-	-	-	-	-	-	-
$120 \mathrm{Vdc}{ }^{(4)}$	A1	9-2026-2	9-2026-2	9-2026-2	-	-	-	-	-	-	-
$240 \mathrm{Vdc}(4)$	B1	9-2026-1	9-2026-1	9-2026-1	-	-	-	-	-	-	-
$24 \mathrm{Vdc}{ }^{(4)}$	T1	9-2026-4	9-2026-4	9-2026-4	-	-	-	-	-	-	-
48 Vdc (4)	W1	9-2026-3	9-2026-3	9-2026-3	-	-	-	-	-	-	-

Notes

(1) Citation overload relays are no longer available. A Freedom overload may be an option. Contact Control Aftermarket at 1-800-535-8992.
(2) Replace complete contactor.
${ }^{(3)}$ Non-encapsulated coil.
(4) For use in existing DC operated devices. Not for conversion of existing AC operated devices to DC .

Three-Pole Contact Kit, Size 3, Series B1

Three-Pole Contact Kit, Size 5

Magnet Coil, 120V/60 Hz for Size 3, Series A1

Replacement Capabilities-Overload Relays

Replacement Capabilities-Overload Relays, continued

Technology Upgrades

Sizes 00-3—Freedom
Sizes 4-6—Freedom
Sizes 7-8—Freedom

Adapter Plates

The adapter plates make it possible to replace a Citation starter with a Freedom starter and the same mounting holes can be used.

Notes

(1) Citation overload relays are no longer available. Replace with up-to-date starter, or contact Standard Open Control Aftermarket at 1-800-535-8992 to determine Freedom overload relay compatibility.
(2) No longer available. Replace with up-todate overload relay or starter.
(3) Will no longer be available once stock is depleted. If stock is out, replace with up-to-date overload relay or starter.
(4) On Vista; no price.
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Adapter Plates Ordering } \\
\text { Information }\end{array} \\
\begin{array}{ll}\text { NEMA } \\
\text { Size }\end{array} & \begin{array}{l}\text { Adapter Plate } \\
\text { Catalog Number }\end{array}
$$

\hline 00,0 \& Freedom\end{array}\right\}\)| 1 | C321CMP0 |
| :--- | :--- |
| 2 | C321CMP1 |
| 3 | C321CMP2 |
| 4 | C321CMP4 |
| 5 | C321CMP5 |

Heaters

Overload relays do not include heaters. Please see table for heater element index.

Heater Selection
 For Replacement in Existing Applications Only

Heaters are rated to protect $40^{\circ} \mathrm{C}$ rise of motors; and, open and drip-proof motors having a service factor of 1.15 where the motor and the controller are at the same ambient temperature.

For other conditions:

1. For $50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ $\left(122^{\circ} \mathrm{F}, 131^{\circ} \mathrm{F}\right.$ and $167^{\circ} \mathrm{F}$) rise motors and enclosed motors having a service factor of 1.0, select one size smaller.
2. Ambient temperature of the starter lower than the motor by $26^{\circ} \mathrm{C}$ ($79{ }^{\circ} \mathrm{F}$), use one size smaller.
3. Ambient temperature of the starter higher than the motor by $26^{\circ} \mathrm{C}$ $\left(79^{\circ} \mathrm{F}\right.$), use one size larger.
Ultimate tripping current of heaters is approximately 1.25 times the minimum current rating listed in the tables.

Heater Selection Index

Note: Use this index to cross-reference tables on Pages V12-T13-9 through V12-T13-21

Index of Overload Relay Heater Selection Tables

Starter Type Catalog Prefix	Type	Heater Selection Table Number NEMA Size of Starter							
		$\begin{aligned} & 00-0-1 \\ & (1-1 / 2) \end{aligned}$	2	3	4	5	6	7	8
A10	Open	ST-1	ST-3	ST-5	ST-7	ST-16	ST-10	ST-11	ST-12
	Enclosed	ST-2	ST-4	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A11	Open	BNC-1	BNC-3	BNC-5	BNC-7	BNC-9	-	-	-
	Enclosed	BNC-2	BNC-4	BNC-6	BNC-7	BNC-9	-	-	-
A13	Open	LT-2	LT-4	LT-6	LT-7	LT-8	-	-	-
	Enclosed	LT-1	LT-3	LT-5	LT-7	LT-8	-	-	-
A30 and A40	Enclosed	ST-9	ST-3	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A31 and A41	Enclosed	BNC-8	BNC-3	BNC-6	BNC-7	BNC-9	-	-	-
A50	Open	ST-1	ST-3	ST-5	ST-7	ST-16	ST-10	ST-11	ST-12
	Enclosed	ST-2	ST-4	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A51	Open	BNC-1	BNC-3	BNC-5	BNC-7	BNC-9	-	-	-
	Enclosed	BNC-2	BNC-4	BNC-6	BNC-7	BNC-9	-	-	-
A70 and A80	Enclosed	ST-9	ST-3	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A71 and A81	Enclosed	BNC-8	BNC-3	BNC-5	BNC-7	BNC-9	-	-	-
A400-A420	Enclosed	-	-	ST-14	ST-15	ST-16	ST-10	ST-11	ST-12
A460 (1)	Enclosed	ST-2 (1)	ST-4 ${ }^{(1)}$	ST-6 (1)	ST-7 (1)	ST-16 (1)	ST-10 ${ }^{(1)}$	ST-11 (1)	ST-12 (1)
A490 (2)	Enclosed	ST-2 ${ }^{2}$	ST-4 ${ }^{(2)}$	ST-6 (2)	ST-7 (2)	ST-16 (2)	ST-10 ${ }^{(2)}$	ST-11 ${ }^{(2)}$	ST-12 ${ }^{(2)}$
A700	Open	ST-1	ST-3	ST-5	ST-7	ST-16	-	-	-
	Enclosed	ST-2	ST-4	ST-6	ST-7	ST-16	ST-10	-	-
A800-A803	Enclosed	ST-9	ST-3	ST-5	ST-7	ST-16	ST-10	ST-11	-
A804-A806	Enclosed	ST-9	ST-3	ST-5	-	-	-	-	-
A808-A809	Enclosed	-	ST-13	ST-5	ST-5	-	-	-	-
B10 and B50	Enclosed	ST-1	ST-3	ST-5	ST-7	-	-	-	-
B11 and B51	Open	BNC-1	-	-	-	-	-	-	-
	Enclosed	BNC-2	BNC-3	BNC-5	-	-	-	-	-
C300	Open and enclosed	ST-1	ST-3	ST-5	ST-7	-	-	-	-
C301	Open and enclosed	BNC-1	BNC-4	BNC-5	BNC-7	-	-	-	-
C303	Open and enclosed	LT-2	LT-4	LT-6	LT-7	-	-	-	-

Notes
(1) Select heaters for 50% of rated full load current.
(2) Select heaters for 68% of rated full load current

Individually boxed heaters master packed 10 per carton.

Contactors, Starters and Brakes

Overload Relay Heater Selection Tables

Type ST Standard Trip Eutectic Alloy
For replacement in existing applications only; for motors with 1.15 service factor.

Table ST-1	Table ST-2	Table ST-3	Table ST-4	Table ST-5 NEMA Size 3	
For Open Type Catalog Prefix A10, A50, A700, B10, B50, C300		For Open Type Catalog Prefix A10, A50, A700, B10, C300		For Open Type Catalog Prefix A10, A50, A700, B10, C300	
For Enclosed Type Catalog Prefix B10, B50, C300 Heater Ampere Range	For Enclosed Type Catalog Prefix A10, A50, A460 ${ }^{(1)}$, A490 ${ }^{(2)}$, A700	For Enclosed Type Catalog Prefix B10, C300, A30, A40, A70, A80, A800-A803	For Enclosed Type Catalog Prefix A10, A50, A460 (${ }^{(1)}$ A490 ${ }^{(2)}$, A700	For Enclosed Type Catalog Prefix A70, A80, A800-A803, A808-A809, B10	Heater Catalog Number
0.167-0.187	0.155-0.173	-	-	-	H1101
0.188-0.210	0.174-0.195	-	-	-	H1102
0.211-0.237	0.196-0.220	-	-	-	H1103
0.238-0.266	0.221-0.247	-	-	-	H1104
0.267-0.298	0.248-0.278	-	-	-	H1105
0.299-0.334	0.279-0.310	-	-	-	H1106
0.335-0.376	0.311-0.349	-	-	-	H1107
0.377-0.422	0.350-0.391	-	-	-	H1108
0.423-0.474	0.392-0.441	-	-	-	H1109
0.475-0.532	0.442-0.495	-	-	-	H1110
0.533-0.598	0.496-0.555	-	-	-	H1111
0.599-0.672	0.556-0.624	-	-	-	H1112
0.673-0.757	0.625-0.703	-	-	-	H1113
0.758-0.855	0.704-0.795	-	-	-	H1114
0.865-0.959	0.796-0.895	-	-	-	H1115
0.960-1.07	0.896-0.999	-	-	-	H1116
1.08-1.21	1.00-1.12	-	-	-	H1117
1.22-1.35	1.13-1.25	-	-	-	H1018
1.36-1.52	1.26-1.41	-	-	-	H1019
1.53-1.70	1.42-1.58	-	-	-	H1020
1.71-1.90	1.59-1.77	-	-	-	H1021
1.91-2.10	1.78-1.96	-	-	-	H1022
2.11-2.33	1.97-2.17	-	-	-	H1023
2.34-2.62	2.18-2.44	-	-	-	H1024
2.63-2.93	2.45-2.72	-	-	-	H1025
2.94-3.27	2.73-3.04	-	-	-	H1026
3.28-3.64	3.05-3.38	-	-	-	H1066
3.65-4.06	3.39-3.73	3.72-4.10	-	-	H1027
4.07-4.55	3.74-4.18	4.11-4.59	3.86-4.31	-	H1028
4.56-5.03	4.19-4.63	4.60-5.07	4.32-4.77	-	H1029

Notes

(1) For A460 controllers, select heaters at 50% of rated full load current.
(2) For A490 controllers, select heaters at 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Type ST Standard Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Notes

(1) For A 460 controllers, select heaters at 50% of rated full load current.
(2) For A490 controllers, select heaters at 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Type ST Standard Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table ST-6 NEMA Size 3	Table ST-7 NEMA Size 4	Table ST-8 NEMA Size 5	Table ST-9 NEMA Size 0 and 1	Table ST-10 NEMA Size 6	
For Enclosed Type Catalog Prefix A10, A30, A40, A50, A460 ${ }^{1}, \mathrm{~A}^{2} 90^{(2)}$, A700 Heater Ampere Range	For Open Type Catalog Prefix A10, A50, C300 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A460 ${ }^{1}$, A490 (2), A700, A800-A803	For Open and Enclosed Catalog Prefix A10, A50, A30-40, A70, A80, A400, A410, A420, A460, A490, A800-A801	For Enclosed Type Catalog Prefix A30, A40, A70, A80, A800-A803	For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 ${ }^{(1)}, \mathbf{A 4 9 0}{ }^{2}$, A700	Heater Catalog Number
-	-	-	0.164-0.183	-	H1101
-	-	-	0.184-0.205	-	H1102
-	-	-	0.206-0.232	-	H1103
-	-	-	0.233-0.260	-	H1104
-	-	-	0.261-0.293	-	H1105
-	-	-	0.294-0.328	-	H1106
-	-	-	0.329-0.369	-	H1107
-	-	-	0.370-0.414	-	H1108
-	-	-	0.415-0.465	-	H1109
-	-	-	0.466-0.522	-	H1110
-	-	-	0.523-0.586	-	H1111
-	-	-	0.587-0.659	-	H1112
-	-	-	0.660-0.743	-	H1113
-	-	-	0.744-0.839	-	H1114
-	-	-	0.840-0.943	-	H1115
-	-	-	0.944-1.05	-	H1116
-	-	-	1.06-1.17	-	H1117
-	-	-	1.18-1.31	-	H1018
-	-	-	1.32-1.47	154-171	H1019
-	-	92-101	1.48-1.66	172-192	H1020
-	-	102-113	1.67-1.85	193-215	H1021
-	-	114-125	1.86-2.04	216-237	H1022
-	-	126-139	2.05-2.26	238-263	H1023
-	-	140-157	2.27-2.54	264-295	H1024
-	-	158-175	2.55-2.85	296-330	H1025
-	-	176-196	2.86-3.18	331-369	H1026
-	-	197-218	3.19-3.53	370-410	H1066
-	-	219-243	3.54-3.95	411-458	H1027
-	-	244-270	3.96-4.41	459-512	H1028
-	-	-	4.42-4.88	513-574	H1029

Notes

(1) For A460 controllers, select heaters for 50% of rated full load current.
(2) For A490 controllers, select heaters for 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Type ST Standard Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table ST-6 NEMA Size 3	Table ST-7 NEMA Size 4	Table ST-8 NEMA Size 5	Table ST-9 NEMA Size 0 and 1	Table ST-10 NEMA Size 6	
For Enclosed Type Catalog Prefix A10, A30, A40, A50, A460 ${ }^{1}$, A490 ${ }^{(2)}$, A700 Heater Ampere Range	For Open Type Catalog Prefix A10, A50, C300 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A460 (1), A490 (2), A700, A800-A803	For Open and Enclosed Catalog Prefix A10, A50, A30-40, A70, A80, A400, A410, A420, A460, A490, A800-A801	For Enclosed Type Catalog Prefix A30, A40, A70, A80, A800-A803	For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 ${ }^{(1)}$, $A 490{ }^{(2)}$, A700	Heater Catalog Number
-	-	-	4.89-5.42	-	H1030
-	-	-	4.89-5.42	-	H1031
-	-	-	6.08-6.64	-	H1032
-	-	-	6.65-7.43	-	H1033
8.24-9.19	-	-	7.44-8.23	-	H1034
9.20-10.1	-	-	8.24-9.19	-	H1035
10.2-11.3	-	-	9.20-10.1	-	H1036
11.4-12.7	-	-	10.2-11.3	-	H1037
12.8-14.1	-	-	11.4-12.6	-	H1038
14.2-15.8	-	-	12.7-14.0	-	H1039
15.9-17.7	-	-	14.1-15.7	-	H1040
17.8-20.1	-	-	15.8-17.7	-	H1041
20.2-22.7	20.6-23.3	-	17.8-19.8	-	H1042
22.8-25.5	23.4-26.3	-	19.9-22.0	-	H1043
25.6-28.9	26.4-30.8	-	22.1-24.9	-	H1044
29.0-32.5	30.9-34.0	-	25.0-27.0	-	H1045
32.6-36.7	34.1-38.3	-	-	-	H1046
36.8-41.0	38.4-43.4	-	-	-	H1047
41.1-46.0	43.5-49.3	-	-	-	H1048
46.1-51.8	49.4-55.8	-	-	-	H1049
51.9-58.6	55.9-63.1	-	-	-	H1050
58.7-64.6	63.2-70.4	-	-	-	H1051
64.7-72.7	70.5-79.9	-	-	-	H1052
72.8-83.1	80.0-92.7	-	-	-	H1054

Notes

(1) For A460 controllers, select heaters for 50% of rated full load current.
(2) For A490 controllers, select heaters for 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Contactors, Starters and Brakes

Type ST Standard Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table ST-11	Table ST-12	Table ST-13	Table ST-14	Table ST-15	
NEMA Size 7	NEMA Size 8	NEMA Size 2	NEMA Size 3	NEMA Size 4	
For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 (1), A490 ${ }^{(2)}$, A700 Heater Ampere Range	For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 (1), A490 ${ }^{(2)}$, A700	For Enclosed Type Catalog Prefix A808, A809	For Enclosed Type Catalog Prefix A400	For Enclosed Type Catalog Prefix A400	Heater Catalog Number
-	-	-	-	-	H1101
-	-	-	-	-	H1102
-	-	-	-	-	H1103
-	-	-	-	-	H1104
-	-	-	-	-	H1105
-	-	-	-	-	H1106
-	-	-	-	-	H1107
-	-	-	-	-	H1108
-	-	-	-	-	H1109
-	-	-	-	-	H1110
-	-	-	-	-	H1111
-	-	-	-	-	H1112
-	-	-	-	-	H1113
-	-	-	-	-	H1114
-	-	-	-	-	H1115
-	-	-	-	-	H1116
-	-	-	-	-	H1117
229-255	-	-	-	-	H1018
256-287	384-429	-	-	-	H1019
288-321	430-482	-	-	-	H1020
322-359	483-538	-	-	-	H1021
360-397	539-595	-	-	-	H1022
398-439	596-657	-	-	-	H1023
440-492	658-741	-	-	-	H1024
493-551	742-827	-	-	-	H1025
552-615	828-924	-	-	-	H1026
616-685	925-1027	-	-	-	H1066
686-763	1028-1147	-	-	-	H1027
764-855	1148-1285	3.89-4.35	-	-	H1028
-	-	4.36-4.81	-	-	H1029

Notes

(1) For A460 controllers, select heaters for 50% of rated full load current.
(2) For A490 controllers, select heaters for 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Type ST Standard Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table ST-11 NEMA Size 7	Table ST-12 NEMA Size 8	Table ST-13 NEMA Size 2	Table ST-14 NEMA Size 3	Table ST-15 NEMA Size 4	
For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 ${ }^{(1)}, \mathbf{A 4 9 0}{ }^{(2)}$, A700 Heater Ampere Range	For Open Type Catalog Prefix A10, A50, A700 For Enclosed Type Catalog Prefix A10, A30, A40, A50, A70, A80, A400, A460 ${ }^{(1)}$, A490 ${ }^{(2)}$, A700	For Enclosed Type Catalog Prefix A808, A809	For Enclosed Type Catalog Prefix A400	For Enclosed Type Catalog Prefix A400	Heater Catalog Number
-	-	4.82-5.35	-	-	H1030
-	-	5.36-5.96	-	-	H1031
-	-	5.97-6.63	-	-	H1032
-	-	6.64-7.41	-	-	H1033
-	-	7.42-8.23	7.84-8.71	-	H1034
-	-	8.24-9.19	8.72-9.67	-	H1035
-	-	9.20-10.2	9.68-10.8	-	H1036
-	-	10.3-11.4	10.9-12.0	-	H1037
-	-	11.5-12.8	12.1-13.5	-	H1038
-	-	12.9-14.1	13.6-15.0	-	H1039
-	-	14.2-15.9	15.1-16.8	-	H1040
-	-	16.0-18.1	16.9-19.1	-	H1041
-	-	18.2-20.4	19.2-21.6	19.5-21.9	H1042
-	-	20.5-23.3	21.7-24.5	22.0-24.7	H1043
-	-	23.4-26.5	24.6-27.8	24.8-29.0	H1044
-	-	26.6-30.3	27.9-31.5	29.1-31.9	H1045
-	-	30.4-34.7	31.6-35.5	32.0-36.1	H1046
-	-	34.8-39.6	35.6-40.3	36.2-40.7	H1047
-	-	39.7-45.0	40.4-45.6	40.8-46.2	H1048
-	-	-	45.7-51.8	46.3-52.4	H1049
-	-	-	51.9-58.6	52.5-59.2	H1050
-	-	-	58.7-65.2	59.3-66.3	H1051
-	-	-	65.3-74.3	66.4-75.1	H1052
-	-	-	74.4-86.3	75.2-87.1	H1054

Notes

(1) For A460 controllers, select heaters for 50% of rated full load current.
(2) For A490 controllers, select heaters for 58% of rated full load current.

Individually boxed heaters master packed 10 per carton.

Contactors, Starters and Brakes

Type BNC Bimetal
For replacement in existing applications only; for motors with 1.15 service factor.

Table BNC-1 NEMA Sizes 00, 0, 1, 1-1/2	Table BNC-2 NEMA Sizes 00, 0, 1, 1-1/2	Table BNC-3 NEMA Size 2	Table BNC-4 NEMA Size 2	
For Open Type Catalog Prefix A11, A51, B11, B51, C301 For Enclosed Type Catalog Prefix C301 Heater Ampere Range	For Enclosed Type Catalog Prefix A11, A51, B11, B51	For Open Type Catalog Prefix A11, A51, B11, C301 For Enclosed Type Catalog Prefix A31, A41, A71, A81, B11	For Enclosed Type Catalog Prefix A11, A51, C301	Heater Catalog Number
0.180-0.201	0.167-0.187	-	-	H1101
0.202-0.226	0.188-0.210	-	-	H1102
0.227-0.254	0.211-0.236	-	-	H1103
0.255-0.285	0.237-0.266	-	-	H1104
0.286-0.320	0.267-0.297	-	-	H1105
0.321-0.357	0.298-0.332	-	-	H1106
0.358-0.402	0.333-0.373	-	-	H1107
0.403-0.451	0.374-0.419	-	-	H1108
0.452-0.506	0.420-0.470	-	-	H1109
0.507-0.568	0.471-0.528	-	-	H1110
0.569-0.638	0.529-0.592	-	-	H1111
0.639-0.716	0.593-0.663	-	-	H1112
0.717-0.799	0.664-0.743	-	-	H1113
0.800-0.911	0.744-0.847	-	-	H1114
0.912-1.01	0.848-0.951	-	-	H1115
1.02-1.14	0.952-1.06	-	-	H1116
1.15-1.29	1.07-1.20	-	-	H1117
1.30-1.44	1.21-1.33	-	-	H1018
1.45-1.61	1.34-1.49	-	-	H1019
1.62-1.80	1.50-1.67	-	-	H1020
1.81-2.03	1.68-1.89	-	-	H1021
2.04-2.25	1.90-2.09	-	-	H1022
2.26-2.49	2.10-2.32	-	-	H1023
2.50-2.76	2.33-2.57	-	-	H1024
2.77-3.05	2.58-2.83	-	-	H1025
3.06-3.39	2.84-3.15	-	-	H1026
3.40-3.83	3.16-3.51	3.87-4.18	-	H1066
3.84-4.22	3.52-3.87	4.19-4.60	3.94-4.33	H1027
4.23-4.63	3.88-4.25	4.61-5.10	4.34-4.78	H1028
4.64-5.19	4.26-4.76	5.11-5.60	4.79-5.27	H1029

Note

Individually boxed heaters master packed 10 per carton.

Type BNC Bimetal
For replacement in existing applications only; for motors with 1.15 service factor.

Table BNC-1 NEMA Sizes 00, 0, 1, 1-1/2	Table BNC-2	Table BNC-3 NEMA Size 2	Table BNC-4 NEMA Size 2	
For Open Type Catalog Prefix A11, A51, B11, B51, C301		For Open Type Catalog Prefix A11, A51, B11, C301 For Enclosed Type		
For Enclosed Type Catalog Prefix C301	For Enclosed Type Catalog Prefix A11, A51, B11, B51	Catalog Prefix A31, A41, A71, A81, B11	For Enclosed Type Catalog Prefix A11, A51, C301	Heater Catalog
Heater Ampere Range				Number
5.20-5.73	4.77-5.27	5.61-6.20	5.28-5.83	H1030
5.74-6.49	5.28-5.90	6.21-6.92	5.84-6.51	H1031
6.50-7.32	5.91-6.63	6.93-7.76	6.52-7.29	H1032
7.33-8.07	6.64-7.35	7.77-8.63	7.30-8.07	H1033
8.08-9.03	7.36-8.15	8.64-9.67	8.08-9.03	H1034
9.04-9.99	8.16-8.87	9.68-10.5	9.04-9.99	H1035
10.0-11.1	8.88-9.99	10.6-11.8	10.0-11.1	H1036
11.2-12.5	10.0-11.1	11.9-13.2	11.2-12.3	H1037
12.6-14.1	11.2-12.5	13.3-15.0	12.4-14.1	H1038
14.2-15.9	12.6-14.1	15.1-17.2	14.2-16.1	H1039
16.0-18.0	14.2-16.1	17.3-19.1	16.2-17.8	H1040
18.1-19.8	16.2-17.7	19.2-21.5	17.9-19.9	H1041
19.9-22.2	17.8-19.8	21.6-23.6	20.0-21.9	H1042
22.3-25.0	19.9-22.2	23.7-27.0	22.0-24.7	H1043
25.1-27.0	22.3-25.0	27.1-30.6	24.8-27.9	H1044
-	25.1-27.0	30.7-35.1	28.0-31.6	H1045
-	-	35.2-39.8	31.7-35.3	H1046
-	-	39.9-45.0	35.4-39.4	H1047
-	-	-	39.5-44.4	H1048
-	-	-	44.5-45.0	H1049
-	-	-	-	H1050
-	-	-	-	H1051
-	-	-	-	H1052
-	-	-	-	H1054
-	-	-	-	H1055
-	-	-	-	H1056
-	-	-	-	H1057
-	-	-	-	H1058

Note

Individually boxed heaters master packed 10 per carton.

Contactors, Starters and Brakes

Type BNC Bimetal, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table BNC-5 NEMA Size 3	Table BNC-6 NEMA Size 3	Table BNC-7 NEMA Size 4	Table BNC-8 NEMA Sizes 0 and 1	Table BNC-9 NEMA Size 5	
For Open Type Catalog Prefix A11, B11, A51, C301 For Enclosed Type Catalog Prefix B11, A71, A81 Heater Ampere Range	For Enclosed Type Catalog Prefix A11, A31, A41, A51	For Open Type Catalog Prefix A11, A51, C301 For Enclosed Type Catalog Prefix A11, A31, A41, A51, A71, A81	For Enclosed Type Catalog Prefix A31, A41, A71, A81	For Open and Enclosed Type Catalog Prefix A11, A31-41, A51, A71, A81	Heater Catalog Number
-	-	-	0.176-0.198	-	H1101
-	-	-	0.199-0.221	-	H1102
-	-	-	0.222-0.249	-	H1103
-	-	-	0.250-0.279	-	H1104
-	-	-	0.280-0.313	-	H1105
-	-	-	0.314-0.350	-	H1106
-	-	-	0.351-0.395	-	H1107
-	-	-	0.396-0.442	-	H1108
-	-	-	0.443-0.497	-	H1109
-	-	-	0.498-0.556	-	H1110
-	-	-	0.557-0.626	-	H1111
-	-	-	0.627-0.703	-	H1112
-	-	-	0.704-0.783	-	H1113
-	-	-	0.784-0.895	-	H1114
-	-	-	0.896-0.999	-	H1115
-	-	-	1.00-1.12	-	H1116
-	-	-	1.13-1.25	-	H1117
-	-	-	1.26-1.40	-	H1018
-	-	-	1.41-1.56	-	H1019
-	-	-	1.57-1.74	96.8-108	H1020
-	-	-	1.75-1.97	109-121	H1021
-	-	-	1.98-2.19	122-135	H1022
-	-	-	2.20-2.42	136-149	H1023
-	-	-	2.43-2.68	150-166	H1024
-	-	-	2.69-2.95	167-182	H1025
-	-	-	2.96-3.29	183-203	H1026
-	-	-	3.30-3.72	204-229	H1066
-	-	-	3.73-4.10	230-253	H1027
-	-	-	4.11-4.49	254-283	H1028
-	-	-	4.50-5.04	-	H1029

Note
Individually boxed heaters master packed 10 per carton.

Type BNC Bimetal, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table BNC-5 NEMA Size 3	Table BNC-6 NEMA Size 3	Table BNC-7 NEMA Size 4	Table BNC-8 NEMA Sizes 0 and 1	Table BNC-9 NEMA Size 5	
For Open Type		For Open Type Catalog Prefix A11, A51, C301		For Open and	
Catalog Prefix A11, B11, A51, C301	For Enclosed Type	For Enclosed Type	For Enclosed Type	Enclosed Type	
For Enclosed Type Catalog Prefix B11, A71, A81	Catalog Prefix A11, A31, A41, A51	Catalog Prefix A11, A31, A41, A51, A71, A81	Catalog Prefix A31, A41,	Catalog Prefix A11, A31-41, A51, A71, A81	Heater
Heater Ampere Range					Catalog Number
-	-	-	5.05-5.56	-	H1030
-	-	-	5.57-6.23	-	H1031
-	-	-	6.24-7.03	-	H1032
7.57-8.47	7.57-8.39	-	7.04-7.75	-	H1033
8.48-9.35	8.40-9.27	-	7.76-8.71	-	H1034
9.36-10.1	9.28-10.1	-	8.72-9.59	-	H1035
10.2-11.2	10.2-11.1	-	9.60-10.5	-	H1036
11.3-12.2	11.2-12.1	-	10.6-11.8	-	H1037
12.3-13.7	12.2-13.6	-	11.9-13.3	-	H1038
13.8-15.7	13.7-15.5	-	13.4-14.9	-	H1039
15.8-17.3	15.6-17.2	-	15.0-16.9	-	H1040
17.4-19.9	17.3-19.8	-	17.0-18.5	-	H1041
20.0-22.9	19.9-22.7	20.0-22.9	18.6-20.7	-	H1042
23.0-26.4	22.8-26.0	23.0-26.4	20.8-23.0	-	H1043
26.5-30.6	26.1-30.0	26.5-30.6	23.1-25.7	-	H1044
30.7-35.5	30.1-34.4	30.7-35.5	25.8-27.0	-	H1045
35.6-41.2	34.5-39.5	35.6-41.2	-	-	H1046
41.3-46.5	39.6-44.3	41.3-46.5	-	-	H1047
46.6-52.4	44.4-49.9	46.6-52.4	-	-	H1048
52.5-57.8	50.0-54.3	52.5-57.8	-	-	H1049
57.9-63.6	54.4-59.8	57.9-63.6	-	-	H1050
63.7-69.9	59.9-65.1	63.7-69.9	-	-	H1051
70.0-79.5	65.2-73.1	70.0-79.5	-	-	H1052
79.6-90.0	73.2-83.9	79.6-92.0	-	-	H1054

Note

Individually boxed heaters master packed 10 per carton.

Contactors, Starters and Brakes

Type 8LT Slow Trip Eutectic Alloy
For replacement in existing applications only; for motors with 1.15 service factor.

Table LT-1 NEMA Size 00,	Table LT-2 $1,1-1 / 2$	Table LT-3 NEMA Size 2	Table LT-4 NEMA Size 2	Table LT-5 NEMA Size 3	Table LT-6 NEMA Size 3	Table LT-7 NEMA Size 4	Table LT-8 NEMA Size 5	
For Enclosed Type Catalog Prefix A13 Heater Ampere	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix C303 ange	For Enclosed Type Catalog Prefix A13	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix C303	For Enclosed Type Catalog Prefix A13	For Open Type Catalog Prefix A13, C303	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix A13	For Open and Enclosed Type Catalog Prefix A13	Heater Catalog Number
0.167-0.186	0.167-0.186	-	-	-	-	-	-	H1001
0.187-0.209	0.187-0.209	-	-	-	-	-	-	H1002
0.210-0.233	0.210-0.233	-	-	-	-	-	-	H1003
0.234-0.260	0.234-0.260	-	-	-	-	-	-	H1004
0.261-0.293	0.261-0.293	-	-	-	-	-	-	H1005
0.294-0.329	0.294-0.329	-	-	-	-	-	-	H1006
0.330-0.373	0.330-0.373	-	-	-	-	-	-	H1007
0.374-0.417	0.374-0.417	-	-	-	-	-	-	H1008
0.418-0.471	0.418-0.471	-	-	-	-	-	-	H1009
0.472-0.531	0.472-0.531	-	-	-	-	-	-	H1010
0.532-0.591	0.532-0.591	-	-	-	-	-	-	H1011
0.592-0.660	0.592-0.660	-	-	-	-	-	-	H1012
0.661-0.739	0.661-0.739	-	-	-	-	-	-	H1013
0.740-0.823	0.740-0.823	-	-	-	-	-	-	H1014
0.824-0.919	0.824-0.919	-	-	-	-	-	-	H1015
0.920-1.01	0.920-1.01	-	-	-	-	-	-	H1016
1.02-1.14	1.02-1.14	-	-	-	-	-	-	H1017
1.15-1.27	1.15-1.27	-	-	-	-	-	-	H1018
1.28-1.41	1.28-1.41	-	-	-	-	-	-	H1019
1.42-1.61	1.42-1.61	-	-	-	-	-	-	H1020
1.62-1.86	1.62-1.86	-	-	-	-	-	96.8-111	H1021
1.87-2.01	1.87-2.01	-	-	-	-	-	112-120	H1022
2.02-2.27	2.02-2.27	-	-	-	-	-	121-136	H1023
2.28-2.51	2.28-2.51	-	-	-	-	-	137-150	H1024
2.52-2.80	2.52-2.80	-	-	-	-	-	151-168	H1025
2.81-3.21	2.81-3.21	-	-	-	-	-	169-192	H1026
3.22-3.51	3.22-3.51	-	-	-	-	-	193-210	H1066
3.52-3.86	3.52-3.86	3.67-3.99	3.67-3.99	-	-	-	211-231	H1027
3.87-4.36	3.87-4.36	4.00-4.51	4.00-4.51	-	-	-	232-261	H1028
4.37-4.78	4.37-4.83	4.52-5.03	4.52-5.03	-	-	-	262-293	H1029

Notes

Individually boxed heaters master packed 10 per carton.
Individually boxed heater coils master packed 10 per carton.

Motor Control

Type LT Slow Trip Eutectic Alloy, continued
For replacement in existing applications only; for motors with 1.15 service factor.

Table LT-1 NEMA Size 00,	Table LT-2 $1,1-1 / 2$	Table LT-3 NEMA Size 2	Table LT-4 NEMA Size 2	Table LT-5 NEMA Size 3	Table LT-6 NEMA Size 3	Table LT-7 NEMA Size 4	Table LT-8 NEMA Size 5	
For Enclosed Type Catalog Prefix A13	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix C303	For Enclosed Type Catalog Prefix A13	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix C303	For Enclosed Type Catalog Prefix A13	For Open Type Catalog Prefix A13, C303	For Open Type Catalog Prefix A13, C303 For Enclosed Type Catalog Prefix 113	For Open and Enclosed Type Catalog Prefix A13	Heater Catalog Number
Heater Ampere Range								
4.79-5.35	4.84-5.41	5.04-5.59	5.04-5.59	-	-	-	-	H1030
5.36-6.00	5.42-6.07	5.60-6.20	5.60-6.20	-	-	-	-	H1031
6.01-6.59	6.08-6.66	6.21-6.88	6.21-6.88	-	-	-	-	H1032
6.60-7.35	6.67-7.51	6.89-7.80	6.89-7.80	-	-	-	-	H1033
7.36-8.14	7.52-8.31	7.81-8.71	7.81-8.71	8.16-9.11	8.24-9.19	-	-	H1034
8.15-9.11	8.32-9.27	8.72-9.59	8.72-9.59	9.12-9.99	9.20-10.0	-	-	H1035
9.12-10.0	9.28-10.3	9.60-10.5	9.60-10.7	10.0-11.2	10.1-11.3	-	-	H1036
10.1-11.3	10.4-11.7	10.6-11.8	10.8-12.0	11.3-12.3	11.4-12.5	-	-	H1037
11.4-12.5	11.8-13.0	11.9-13.3	12.1-13.4	12.4-13.9	12.6-14.1	-	-	H1038
12.6-13.9	13.1-14.5	13.4-14.8	13.5-14.9	14.0-15.5	14.2-15.7	-	-	H1039
14.0-15.5	14.6-16.3	14.9-16.6	15.0-16.8	15.6-17.4	15.8-17.6	-	-	H1040
15.6-17.0	16.4-18.1	16.7-18.5	16.9-18.8	17.5-19.6	17.7-19.8	-	-	H1041
17.1-18.9	18.2-20.3	18.6-20.7	18.9-21.1	19.7-21.9	19.9-22.1	20.0-22.3	-	H1042
19.0-21.2	20.4-23.0	20.8-23.3	21.2-24.1	22.0-24.7	22.2-25.2	22.4-25.5	-	H1043
21.3-23.3	23.1-25.9	23.4-26.5	24.2-27.3	24.8-28.1	25.3-28.7	25.6-28.9	-	H1044
23.4-26.1	26.0-27.0	26.6-30.0	27.4-31.3	28.2-31.8	28.8-32.7	29.0-33.7	-	H1045
26.2-27.0	-	30.1-33.7	31.4-35.5	31.9-36.1	32.8-37.3	33.8-37.5	-	H1046
-	-	33.8-37.5	35.6-40.3	36.2-40.7	37.4-42.3	37.6-42.6	-	H1047
-	-	37.6-41.9	40.4-45.0	40.8-45.5	42.4-47.9	42.7-48.2	-	H1048
-	-	42.0-45.0	-	45.6-52.0	48.0-55.4	48.3-55.9	-	H1049
-	-	-	-	52.1-58.2	55.5-61.9	56.0-62.3	-	H1050
-	-	-	-	58.3-63.2	62.0-67.9	62.4-68.4	-	H1051
-	-	-	-	63.3-68.3	68.0-73.3	68.5-73.7	-	H1052
-	-	-	-	68.4-79.9	73.4-87.9	73.8-88.7	-	H1054

Notes
Individually boxed heaters master packed 10 per carton.
Individually boxed heater coils master packed 10 per carton.

Type \mathbf{N}
Originally a Westinghouse Product

Type N Contactor

Product History Time Line for Type N

Replacement Capabilities

Contact Kits

NEMA	Poles	Style Number
Size	Num	$\mathbf{1 6 0 5 2 2 6}$
0	3	$\mathbf{1 6 0 5 2 1 2}$
1	3	$\mathbf{1 6 0 5 2 0 2}$
2	3	$\mathbf{1 6 2 5 5 6 3}$
3	3	$\mathbf{1 6 2 5 5 6 4}$
4		

AC Coils
$\left.\begin{array}{llllll} & & \begin{array}{l}\text { Part Number } \\ \text { Two-, Three-Pole } \\ \text { Original }\end{array} & \text { New } & & \\ \text { Voltage } & & & \text { Original }\end{array}\right)$

Technology Upgrades

Sizes 00-3-Freedom or IT.
Sizes 4-5—Freedom,
Vacuum or IT.

A200
Originally a Westinghouse Product

A200 Size 1 Starter

Contact Kit for A200 ModeI J, Size Two-, Three-Pole

A200 AC Coil, 120/110V, 60/50 Hz, Two-, Three-, Four-Pole, Sizes 00, 0 and 1

Product History Time Line for A200, A201, A203, A204, A206, A210, A211, A213, A214, A216, A220, A223, A224, A226, A250, A251, A600, A603, A604, A606, A700, A703, A704, A706, A800, A804 and A806

Replacement Capabilities

Kits for Model J, Sizes 00, 0, 1 and 2 (1)

Description	Poles	Size 00	Size 0	Size 1	Size 2
Contact kit	2	373B331G17	373B331G02	373B331G07	373B331G11
	3	373B331G18	373B331G04	373B331G09	373B331G12
	4	373B331G18	373B331G04	373B331G09	373B331G13 ${ }^{2}$
	5	373B331G19	373B331G05	373B331G10	373B331G14 ${ }^{3}$
Arc box ${ }^{(4)}$	2-4	6714C74G01	6714C74G02	6714C74G03	6714C74G07 (two-, three-pole)
	5	6714C74G04	6714C74G05	6714C74G06	6714C74G08 (four-, five-pole)
Cross bar	2-3	N/A	N/A	N/A	672B788G32
	4-5	N/A	N/A	N/A	672B788G34
Upper base (for single rated coils only)	2-3	N/A	N/A	N/A	672B788G33
	4-5	N/A	N/A	N/A	672B788G35
Lower base	2-3	N/A	N/A	N/A	1250C33G09
	4-5	N/A	N/A	N/A	1250C33G05
K0 spring (pk. of 10)	All	N/A	N/A	N/A	503C796G01
Terminal line/load (pk. of 3)	All	N/A	N/A	N/A	371B870G03

AC Coils

Voltage	Hz	Sizes 00, 0 and 1 Two-, Three-, Four-Pole	Five-Pole	Size 2 Two-, Three-Pole	Four-, Five-Pole
120/110	60/50	505C806G01	505C808G01	505C806G01	505C818G01
208	60	505C806G02	505C808G02	505C806G02	505C818G02
600/550	60/50	505C806G05	505C808G05	505C806G05	505C818G05
380	50	505C806G07	505C808G07	505C806G07	505C818G07
240/220	60/50	505C806G12	505C808G12	505C806G12	505C818G12
480/440	60/50	505C806G13	505C808G13	505C806G13	505C818G13
24	60	505C806G16	N/A	505C806G16	505C818G15
277	60	505C806G18	505C808G16	505C806G18	505C818G16
240/480 ©	60/60	505C806G03	505C808G03	505C806G03	505C818G03
120/240 ©	60/60	505C806G10	505C808G10	505C806G10	505C818G10

Notes

(1) Model C contact kits and coils 00-4, two-, three-, four- and five-pole contactors are same as Model J. All other parts are unavailable.
(2) Use quantity two-373B331G11 (two-pole kit).
(3) Use one each of 373B331G11 (two-pole kit) and 373B331G12 (three-pole kit).
(4) Mounting hardware included.
(5) Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.

A200 AC Coil, 110/120V, 60 Hz, Size 6

A200 AC Coil, 120/110V, $60 / 50 \mathrm{~Hz}$, Two-, Three-Pole, Sizes 3 and 4, Model J

DC Coils ${ }^{1}$

	Size 0	Size 1	Size 2
Voltage	Single-, Two-, Three-, Four-Pole	Single-, Two-, Three-, Four-Pole	Single-, Two-, Three-, Four-Pole
12	1268C86G07	1268C86G07	1268C86G07
24	1268C86G04	1268C86G04	1268C86G04
48	1268C86G05	1268C86G05	1268C86G05
125	1268C86G02	1268C86G02	1268C86G02
250	1268C86G01	1268C86G01	1268C86G01
$125 / 250 ~(2)$	$1268 C 86 G 03$	$1268 C 86 G 03$	1268C86G03

Kits for Model J-K, Sizes 3 and 4 (3)

Description	Poles	Size 3-Model J	Size 4-Model J	Size 4-Model K ${ }^{4}$
Contact kit	2	626B187G12	626B187G16	5250C81G16
	3	626B187G13	626B187G17	5250C81G17
	4	626B187G14 ${ }^{\text {5 }}$	626B187G18 ${ }^{\text {(7) }}$	5250C81G18
	5	626B187G15 ${ }^{\text {® }}$	626B187G19 ${ }^{\text {8 }}$	5250C81G19
Arc box	2-3	6714C74G09	6714C74G11	6714C74G11
	4-5	6714C74G10	6714C74G12	6714C74G12
Cross bar	2-3	672B788G36	672B788G36	672B788G40
	4-5	672B788G38	672B788G38	-
Upper base	2-3	672B788G37	672B788G37	672B788G52
	4-5	672B788G39	672B788G39	-
Lower base	2-3	1250C33G03	1250C33G03	1250C33G10
	4-5	1250C33G06	1250C33G06	-
K0 spring (pk. of 10)	All	503C796G02	503C796G02	672B788G50
Terminals line/load (pk. of 3)	All	372B357G12	372B357G13	372B357G13

AC Coils

Voltage	Hz	Model J, Sizes 3-4		Model K, Size $4{ }^{(9)}$	
		Two-, Three-Pole	Four-, Five-Pole	Two-, Three-Pole	Four-, Five-Pole
120/110	60/50	505C633G01	505C635G01	5250C79G01	5250C80G01
208	60	505C633G02	505C635G02	5250C79G02	5250C80G02
600/550	60/50	505C633G05	505C635G05	5250C79G05	5250C80G05
380	50	505C633G07	505C635G07	5250C79G07	5250C80G07
240/220	60/50	505C633G12	505C635G12	5250C79G12	5250C80G12
480/440	60/50	505C633G13	505C635G13	5250C79G13	5250C80G13
24	60	505C633G34	N/A	5250C79G34	N/A
277	60	505C633G14	N/A	5250C79G14	N/A
240/480 (1)	60/60	505C633G03	505C635G03	5250C79G03	5250C80G03
120/240 (1)	60/60	505C633G10	505C635G10	5250C79G10	5250C80G10

DC Coils ©

Voltage	Model J, Sizes 3-4 Two-, Three-Pole
24	1255C68G04
48	$\mathbf{1 2 5 5 C 6 8 G 0 5}$
125	$\mathbf{1 2 5 5 C 6 8 G 0 1}$
250	$\mathbf{1 2 5 5 C 6 8 G 0 2}$
$125 / 250$	$\mathbf{1 2 5 5 C 6 8 G 0 3}$

Notes

(1) Use only on contactors originally supplied with a DC coil.
(2) Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.
${ }^{(3)}$ Model C contact kits and coils 00-4, two-, three-, four- and five-pole contactors are same as Model J. All other parts are unavailable.
(4) Model K replaces Model J.
(5) Use quantity two-626B187G12 (two-pole kits).
© Use one of each of 626B187G12 (two-pole kit) and 626B187G13 (three-pole kit).
(7) Use quantity two-626B187G16 (two-pole kit).
${ }^{8}$ Use one each of 626B187G16 (two-pole kit) and 626B187G17 (three-pole kit).
(9) Model K replaces Model J.
(10) Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.
(1) Use only on units originally supplied with DC coil.

Kits for GCA 530/630, Sizes 5-9-and GPD Sizes 7-9 (1)

Kit	Size 5	Size 6	Size 7	Size 8	Size 9
Contact kit (one per pole)	477B477G05 ${ }^{(2)}$	2066A10G11	461A757G17	646C829G05	5264C42G01 (rear connected)
	-	-	-	-	5264C42G02 (front connected)
Arc box	2050A15G45	2066A10G45	831D580G01	831D580G01	9917D69G02
Magnet assembly	2050A15G46	2050A15G46	N/A	N/A	N/A
Magnet spacing kit	2050A15G47	2050A15G47	N/A	N/A	N/A
Arc cup kit	2050A15G48	N/A	N/A	N/A	N/A
Load connection kit	2050A15G49	2066A10G49	N/A	N/A	N/A
Line connection kit	2050A15G50	2066A10G50	N/A	N/A	N/A
K0 spring-6	2050A15G51	2066A10G46	N/A	N/A	N/A
CT 300/5	655C285H03	N/A	N/A	N/A	N/A
CT 400/5	655C285H04	-	-	-	-
CT 600/5	N/A	2066A10G18 ${ }^{(3)}$	N/A	N/A	N/A
CT 800/5	N/A	2066A10G19 3 ${ }^{\text {3 }}$	N/A	N/A	N/A
Phase barrier	N/A	N/A	640C441G01	640C441G01	5264C35G03 (rear connected)
Cross bar	2050A15G12	2066A10G15	N/A	N/A	N/A
Shunt	N/A	2066A10G48	650C129G01	646C831G02 (set of three)	5264C39G02 (set of four)

Coils

Voltage	Hz	Size 5	Size 6
$110 / 120$	60	2050A14G05	2050A12G05
$110 / 120$	50	2050A14G06	2050A12G06
$200 / 208$	50	2050A14G07	2050A12G07
$220 / 240$	50	2050A14G08	2050A12G08
$200 / 208$	60	2050A14G09	2050A12G09
$220 / 240$	60	2050A14G10	2050A12G10
$277 / 303$	60	2050A14G12	2050A12G12
$380 / 415$	50	2050A14G14	2050A12G14
$440 / 480$	60	2050A14G15	2050A12G15
$440 / 480$	50	2050A14G16	2050A12G16
$550 / 600$	60	2050A14G17	2050A12G17
$550 / 600$	50	2050A14G18	2050A12G18
$380 / 415$	60	2050A14G19	2050A12G19
$120 / 240$	60	2050A14G20	2050A12G20
$24 D C$	-	2050A14G21	2050A12G21
$48 D C$	-	2050A14G22	2050A12G22
$125 D C$	-	2050A14G25	2050A12G25
$250 D C$	-	2050A14G27	2050A12G27

Coils

Line Voltage	Sizes 7-8	Required	Size 9
115 Vdc	438C805G01	2	100 Vdc 5264C34G01
125 Vdc	438C805G04	2	
230 Vdc	(contains coil		
and resistor)			

Notes

(1) Catalog No. A201/A200 Series replaces GCA/GPD Series. Renewal parts are the same.
${ }^{2}$ 2) Use 477B477G06 for Silver Tungsten applications.
(3) CT Kit replaces the single molded one CT assembly used on the old Size 6 airbrake. The kit includes a single molded three CT assembly, two busbars and hardware. This CT Kit also replaces the single molded three CT assembly used on the present Size 6 airbrake and Size 6 vacuum contactor.
(4) Rectifier 125V 2018A40G01 (one required).

5 Rectifier 250V 2018A40G02 (one required).
Rectifier 600V 2018A40G03 (one required).
These coils require an external rectifier. If the rectifier needs to be replaced, order by the appropriate style number.

DC Coil Conversion KitStyle Number 7864A29G01
A rectifier circuit converts the AC supply to DC supply. This conversion provides quiet operation and improves pickup and dropout characteristics. All necessary parts are included in the kit.

L63-Style Number 578D461G01

L64-Style Number 843D943G04

Accessories for Size 5-9 AC Contactors-Coils

AC Contactors	Voltage	AC/DC Coil Conversion Kit	Replacement Coil
Size 5	120 Vac	7864A28G01	7856A15G05
	240 Vac	7864A28G02	7856A15G10
	480 Vac	7864A28G03	7856A15G15
Size 6	120 Vac	7864A29G01	7856A16G05
240 Vac	7864A29G02	7856A16G10	
	480 Vac	7864A29G03	7856A16G15

Accessories for Size 5-9 AC Contactors-Auxiliary Electrical Interlock

Contactor Size	Catalog Number (Obsolete)	Style Number (Obsolete)	Circuits	Catalog Number (Current)	Style Number (Current)
00-6	(L-56)	(2609D01G01)	1NO and 1NC	J11	9084A17G01
	(L-56D)	(2609D01G02)	2N0	J20	9084A17G02
	(L-56E)	(2609D01G03)	1NO and 1NC	J11	9084A17G01
	(L-56B)	(2609D01G04)	2N0	J20	9084A17G02
	(L-56H)	(2609D01G05)	2N0	J20	9084A17G02
	(L-56J)	(2609D01G06)	1N0 and 1NC DB	J1C	N/A
	(T-56A)	(2609D01G07)	N/A	N/A	N/A
	(T-56A)	(2609D01G07)	N/A	N/A	N/A
	(T-56B)	(2609D01G08)	N/A	N/A	N/A
	(L-56F)	(2609D01G09)	N/A	N/A	N/A
	(L-56G)	(2609D01G10)	1NO and 1NC DB	J1C	9084A17G04
	(L-56C)	(2609D01G11)	2NC	J02	9084A17G03
	(L-56M)	(2609D01G12)	N/A	N/A	N/A
	(L-56P)	(2609D01G17)	1NO and 1NC	J11	9084A17G01
	(L-56R)	(2609D01G18)	2NC	J02	9084A17G03
	(L-56S)	(2609D01G19)	1NO and 1NC	J11	9084A17G01
7-8	L63	-	NO	-	578D461G01
	L63	-	NC	-	578D461G03
9	L64	-	NO/NC	-	843D943G04
	L64	-	2NO	-	843D943G05
	L64	-	2NC	-	843D943G06

Technology Upgrades

Sizes 00-3-Freedom or IT.
Sizes 4-6-Freedom, Vacuum or IT.
Sizes 7-8—Freedom
Size 9—No upgrade available

Manual Reset, Class 20, Thermal Type B Overload Relay

Type B Overload Relay, Panel Mounted

Field-Mountable Alarm Contact
Note: Alarm contact available as factory modification of field mountable. For factory modification, add suffix B.

Application Description

The Type B overload relay is designed to protect industrial motors against overload conditions. Using modern block-type, bimetallic design, this relay will provide Class 20 operation in either singlephase or three-phase applications.

Features

- Ambient compensation standard
- Alarm contact field mountable
- Class 20-600V design
- Inverse time delay trip
- Test trip device for weld check
- High visibility up-front trip indication
- Trip-free reset mechanism

Operation

The Type B overload relay is a bimetallic actuated device. The bimetal elements are operated by precisely calibrated heaters. The heater elements connect either directly in the circuit to be measured, or through current transformers on applications NEMA Size 5 and larger.

As the bimetals are heated by motor current flow, a deflection force is produced. Upon a sustained level of abnormal current flow, the deflection becomes great enough to open the snap action output contact.

Ambient Compensation

The Type B ambient compensated design is supplied as standard on all A200 starters. This design uses a second compensating bimetal responsive to ambient air temperature in the surrounding enclosure. This feature reduces nuisance tripping in applications using compact control panels and motor control centers where internal temperature rise is significant compared to motor ambient temperature. The compensating characteristic is maintained in ambient temperatures from $40^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$.

Design Standards

UL® 508, CSA®, ANSI/NEMA ICS 2-222.

Overload Relay Selection Table
For replacement in existing applications only.

Motor Full Load Amperes	Starter Mounted Catalog Number					
	Panel Mounted Catalog Number		Replacement for Type B Overload Relays		Replacement for Type A Overload Relays in Manual Reset Mode (Three-Pole Only)	
	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.
Single-Pole (One NC Contact)						
0.25-26.2	BA11JP	BN11JP	BA11A	BN11A	-	-
26.3-45.0	BA21JP	BN21JP	BA21A	BN21A	-	-
19.0-90.0	Use three-pole design, wire three-poles in series					
19.0-135.0						
Three-Pole (One NC Contact)						
0.25-26.2	BA13JP	BN13.JP	BA13A ${ }^{2}$	BN13A ${ }^{2}$	BA13J	BN13J
26.3-45.0	BA23.JP	BN23.JP	BA23A	BN23A	BA23J	BN23J
19.0-90.0	BA33P	BN33P	BA33A	BN33A	BA33A	BN33A
19.0-135.0	BA43P	BN43P	BA43A	BN43A	BA43A	BN43A

Alarm Contact Kit Selection

Type B Overload	
Relay Size	Catalog Number
1,2	B3NO-2
3,4	B3NO-4

Heaters

Price of overload relay does not include heaters. Select from the tables on Pages V12-T13-30 to V12-T13-32.

Notes

(1) Includes contactor mounting bracket, overload relay and connection straps to contactor.
(2) For replacement on B 200 sizes 00,0 and 1, use BA23A instead of BA13A and use BN23A instead of BN13A.

Auto/Manual Reset, Class 20, Thermal Type A Overload Relay

Three-Pole Panel Mounted

Single-Pole Panel Mounted
Application Description
The Type A overload relay is designed to protect industrial motors against overload conditions. Using modern block-type, bimetallic design, this relay will provide Class 20 operation in either singlephase or three-phase applications.

Features

- Field selectable manual/ auto reset
- Alarm contact factory available
- Class 20-600V design
- Inverse time delay trip
- Adjustable trip rating $\pm 15 \%$
- Color-coded reset rod: Compensated (gray) Non-compensated (red)

Operation

The Type A overload relay is a bimetallic actuated device. The bimetal elements are operated by precisely calibrated heaters. The heater elements connected either directly in the circuit to be measured, or through current transformers on applications NEMA Size 5 and larger.

As the bimetals are heated by motor current flow, a deflection force is produced. Upon a sustained level of abnormal current flow, the deflection becomes great enough to open the snap action output contact.

Overload Relay Selection Table
For replacement in existing applications only.

Motor Full Load Amperes	Panel Mounted Catalog Number		Starter Mounted Catalog Number	
	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.
Single-Pole (One NC Contact)				
0.25-26.2	AA11P	AN11P	AA11A	AN11A
26.3-45.0	AA21P	AN21P	AA21A	AN21A
19.0-90.0	AA31P	AN31P	AA31A	AN31A
19.0-135.0	AA41P	AN41P	AA41A	AN41A
Three-Pole (One NC Contact) (1)				
0.25-26.2	AA13P	AN13P	AA13A	AN13A
26.3-45.0	AA23P	AN23P	AA23A	AN23A
19.0-90.0	AA33P	AN33P	AA33A	AN33A
19.0-135.0	AA43P	AN43P	AA43A	AN43A
Heaters		Notes		
Price of ove not include from the tab V12-T13-30	elay does Select Pages 2-T13-32	(1) Three-pole Type B Overload Relay is a suitable alternative to a three-pole Type A Overload Relay in Manual Reset Mode. For example, use BA13JP for AA13P and BN23J for AN23A, etc. (See Page V12-T13-27.)		
		Alarm contact available only as factory modification on Type A relay.		

Motor Control

Type FT Fast Trip, Class 10 Overload Relay

Single-Pole Fast Trip, Panel Mounted

Three-Pole Fast Trip, Panel Mounted

Application Description

The Type FT overload relay is designed to protect special purpose motors having restricted thermal and locked rotor capabilities. Using modern block-type, bimetallic design, this relay will provide Class 10 operation in singlephase or three-phase applications.

Features

- Class 10-600V design
- Inverse time delay trip
- Color-coded reset rodgreen
- Alarm contact factory available
- Field selectable manual/ auto reset
- Adjustable trip rating $\pm 20 \%$
- Ambient compensation included

Operation

The Type FT overload relay is a bimetallic actuated device. The bimetal elements are operated directly from line current, thus separate calibrating heater elements are not used. The overload relay may be wired directly in the motor circuit, or through current transformers on applications larger than 150A.

Overload Relay Selection Table
For replacement in existing applications only.

Motor Full Load Amperes	Panel Mounted Catalog Number		Starter Mounted Catalog Number ${ }^{(1)}$	
	Single-Pole ${ }^{(1)}$	Three-Pole ${ }^{(2)}$	NEMA Size	Single-Pole
Single-Pole (One NC Contact); Three-Phase (Three NC Contacts in Series)				
0.76-1.1	FT11P-1.1	FT13P-1.1	-	FT11A-1.1
1.1-1.6	FT11P-1.6	FT13P-1.6	-	FT11A-1.6
1.6-2.4	FT11P-2.4	FT13P-2.4	0,1	FT11A-2.4
2.4-3.6	FT11P-3.6	FT13P-3.6	0,1	FT11A-3.6
3.6-5.4	FT11P-5.4	FT13P-5.4	0,1	FT11A-5.4
5.4-8.0	FT11P-8	FT13P-8	0,1	FT11A-8
8.0-12	FT11P-12	FT13P-12	0,1	FT11A-12
12-18	FT11P-18	FT13P-18	1	FT11A-18
16-24	FT11P-24	FT13P-24	1	FT11A-24
22-32	FT11P-32	FT13P-32	0,1	FT11A-32
24-36	FT21P-36	FT23P-36	2	FT21A-36
36-54	FT21P-54	FT23P-54	2	FT21A-54
22-32	FT31P-32	FT33P-32	3	FT31A-32
32-48	FT31P-48	FT33P-48	3	FT31A-48
48-72	FT31P-72	FT33P-72	3	FT31A-72
72-110	FT41P-110	FT43P-110	4	FT41A-110
100-150	FT41P-150	FT43P-150	4	FT41A-150

Notes

(1) Single-pole (one NO-NC contact): Add suffix B.
(2) Three-pole (three NO-NC contacts): Add suffix B. Example: FT13PB-12.

Alarm contact available only as factory modification on FT relay

Contactors, Starters and Brakes

Heaters for Thermal Types A and B Overload Relays

Product Description

Each heater is identified by a catalog number stamped on one terminal. The heater application table indicates the range of full load motor current to which a given heater may be applied.
Heaters should be selected on the basis of the actual full load current and service factor as shown on the motor nameplate or in the manufacturer's published literature.

When motor and overload relay are in the same ambient and the service factor of the motor is 1.15 to 1.25 , select heaters from the heater application table. If the service factor of the motor is 1.0, or there is no service factor shown, or a maximum of 115% protection is desired, select one size smaller heater than indicated.

When motor and overload relay are in different ambients and when using non-compensated overload relays, select heaters from the tables on Pages
V12-T13-30 through V12-T13-32 using adjusted motor currents as follows: decrease rated motor current 1% for each ${ }^{\circ} \mathrm{C}$ motor ambient exceeds controller ambient. Increase rated motor current 1% for each ${ }^{\circ} \mathrm{C}$ controller ambient exceeds motor ambient.
For temperature compensated overload relays, select heaters according to the tables on
Pages V12-T13-30 through
V12-T13-32 and selection information above regardless of ambient.

Protect the starter against short circuits by providing branch circuit protection per National Electrical Code ${ }^{\circledR}$ (NEC®).

Heater Selection for Types A and B Overload Relays, Sizes 00, 0, 1 and 2 Starters

Non-Compensated Open Starters and Ambient Compensated Open and Enclosed Starters		Non-Compensated Enclosed Starters		
Block-Type Overload Using Three Heaters Full Load Current of M	Single-Pole Type Overload peres) (1)(2)	Block-Type Overload Using Three Heaters	Single-Pole Type Overload	Heater Catalog Number
For Sizes 0, 1 and 2 Starters				
0.25-0.27	0.29-0.31	0.24-0.25	0.28-0.30	FH03
0.28-0.31	0.32-0.35	0.26-0.28	0.31-0.34	FH04
0.32-0.34	0.36-0.39	0.29-0.31	0.35-0.37	FH05
0.35-0.38	0.40-0.43	0.32-0.35	0.38-0.42	FH06
0.39-0.42	0.44-0.48	0.36-0.39	0.43-0.47	FH07
0.43-0.46	0.49-0.53	0.40-0.43	0.48-0.52	FH08
0.47-0.50	0.54-0.58	0.44-0.47	0.53-0.56	FH09
0.51-0.55	0.59-0.64	0.48-0.51	0.57-0.63	FH10
0.56-0.62	0.65-0.71	0.52-0.57	0.64-0.70	FH11
0.63-0.68	0.72-0.79	0.58-0.63	0.71-0.77	FH12
0.69-0.75	0.80-0.87	0.64-0.70	0.78-0.85	FH13
0.76-0.83	0.88-0.96	0.71-0.77	0.86-0.94	FH14
0.84-0.91	0.97-1.06	0.78-0.85	0.95-1.03	FH15
0.92-1.00	1.07-1.16	0.86-0.93	1.04-1.13	FH16
1.01-1.11	1.17-1.28	0.94-1.03	1.14-1.25	FH17
1.12-1.22	1.29-1.41	1.04-1.13	1.26-1.38	FH18
1.23-1.34	1.42-1.55	1.14-1.25	1.39-1.52	FH19
1.35-1.47	1.56-1.71	1.26-1.37	1.53-1.67	FH20
1.48-1.62	1.72-1.87	1.38-1.51	1.68-1.83	FH21
1.63-1.78	1.88-2.06	1.52-1.65	1.84-2.01	FH22
1.79-1.95	2.07-2.26	1.66-1.81	2.02-2.21	FH23
1.96-2.15	2.27-2.48	1.82-1.99	2.22-2.43	FH24
2.16-2.35	2.49-2.72	2.00-2.19	2.44-2.66	FH25
2.36-2.58	2.73-2.99	2.20-2.39	2.67-2.92	FH26
2.59-2.83	3.00-3.28	2.40-2.63	2.93-3.21	FH27
2.84-3.11	3.29-3.60	2.64-2.89	3.22-3.53	FH28
3.12-3.42	3.61-3.95	2.90-3.17	3.54-3.87	FH29
3.43-3.73	3.96-4.31	3.18-3.47	3.88-4.22	FH30
3.74-4.07	4.32-4.71	3.48-3.79	4.23-4.61	FH31
4.08-4.39	4.72-5.14	3.80-4.11	4.62-4.9	FH32
4.40-4.87	5.15-5.6	4.12-4.55	5.0-5.5	FH33
4.88-5.3	5.7-6.2	4.56-5.0	5.6-6.0	FH34

Notes

(1) Based on $60^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ wire for 30 A or less.
(2) Based on $60^{\circ} \mathrm{C}$ wire for 31 to 95 A .

Heaters are packaged in strips of six. Minimum ordering quantity is 12 .

Contactors, Starters and Brakes

Heater Selection for Types A and B Overload Relays, Sizes 00, 0, 1 and 2 Starters, continued

Non-Compensated Open Starters and Ambient Compensated Open and Enclosed Starters		Enclosed Starters		
Block-Type Overload Using Three Heaters Full Load Current of Motor (Amperes) (1) ${ }^{(2)}$	Single-Pole Type Overload	Block-Type Overload Using Three Heaters	Single-Pole Type Overload	Heater Catalog Number
For Sizes 0, 1 and 2 Starters				
5.4-5.9	6.3-6.8	5.1-5.5	6.1-6.6	FH35
6.0-6.4	6.9-7.5	5.6-5.9	6.7-7.3	FH36
6.5-7.1	7.6-8.2	6.0-6.6	7.4-8.0	FH37
7.2-7.8	8.3-9.0	6.7-7.2	8.1-8.7	FH38
7.9-8.5	9.1-9.9	7.3-7.9	8.8-9.7	FH39
8.6-9.4	10.0-10.8	8.0-8.7	9.8-10.5	FH40
9.5-10.3	10.9-11.9	8.8-9.5	10.6-11.7	FH41
10.4-11.3	12.0-13.1	9.6-10.5	11.8-12.7	FH42
11.4-12.4	13.2-14.3	10.6-11.5	12.8-14.0	FH43
12.5-13.5	14.4-15.7	11.6-12.6	14.1-15.3	FH44
13.6-14.9	15.8-17.2	12.7-13.8	15.4-16.6	FH45
15.0-16.3	-	13.9-15.1	-	FH46
16.4-18.0	-	15.2-16.7	-	FH47
For Sizes 1 and 2 Starters				
-	17.3-18.9	-	16.7-18.3	FH46
-	19.0-20.8	-	18.4-20.0	FH47
18.1-19.8	20.9-22.9	16.8-18.3	20.1-21.9	FH48
19.9-21.7	23.0-25.2	18.4-20.2	22.0-23.9	FH49
21.8-23.9	25.3-27.6	20.3-22.2	24.0-26.2	FH50
24.0-26.2	-	22.3-24.3	-	FH51
-	-	24.4-26.6	-	FH52
For Size 2 Starters				
-	27.7-30.3	-	26.3-28.8	FH51
26.3-28.7	30.4-33.3	-	28.9-31.4	FH52
28.8-31.4	33.4-36.4	26.7-29.1	31.5-34.5	FH53
31.5-34.0	36.5-39.9	29.2-32.0	34.6-37.9	FH54
34.6-37.9	42.0-43.9	32.1-35.2	38.0-41.9	FH55
38.0-41.5	-	35.3-38.5	42.0-45.0	FH56
41.6-45.0	-	38.6-42.3	-	FH57

Notes

(1) Based on $60^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ wire for 30 A or less.
(2) Based on $60^{\circ} \mathrm{C}$ wire for 31 to 95 A .

Heaters are packaged in strips of six. Minimum ordering quantity is 12 .

Heater Selection for Types A and B Overload Relays, Sizes 3 and 4 Starters (1)(3)

13

Ambient		
Compensated	Non-Compensated Enclosed Starters	Heater Catalog Number
Enclosed Starters		
All Applications		
Full Load Current of Motor (Amperes) (1)		
For Sizes 3 and 4 Starters		
12.8-14.1	11.9-13.0	FH68
14.2-15.5	13.1-14.3	FH69
15.6-17.1	14.4-15.9	FH70
17.2-18.9	16.0-17.4	FH71
19.0-20.8	17.5-19.1	FH72
20.9-22.9	19.2-21.1	FH73
23.0-25.2	21.2-23.2	FH74
25.3-27.8	23.3-25.6	FH75
27.9-30.6	25.7-28.1	FH76
30.7-33.5	28.2-30.8	FH77
33.6-37.5	30.9-34.5	FH78
37.6-41.5	34.6-38.2	FH79
41.6-46.3	38.3-42.6	FH80
46.4-50	42.7-46	FH81
51-55	47-51	FH82
56-61	52-56	FH83
62-66	57-61	FH84
67-73	62-67	FH85
74-78	68-72	FH86
79-84	73-77	FH87
85-92	78-84	FH88
-	85-91	FH89
For Size 4 Starte		
93-101	-	FH89
102-110	92-99	FH90
111-122	100-110	FH91
123-129	111-122	FH92
130-133	123-128	FH93
-	129-133	FH94

Heater Selection for Types A and B Overload Relays, Sizes 5 and 6 Starters ${ }^{4}$

Size 7 and Larger

Advise full load current

Notes

(1) Based on $60^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ wire for 30 A or less.
(2) Based on $60^{\circ} \mathrm{C}$ wire for 31 to 95 A .
(3) Based on $75^{\circ} \mathrm{C}$ wire for greater than 95 A .
(4) Based on $75^{\circ} \mathrm{C}$ wire.

Heaters are packaged in strips of six. Minimum ordering quantity is 12.

Motor Control

A202 Lighting Contactor (Electrically Held/ Magnetically Latched)
Originally a Westinghouse Product

30A, Four-Pole Magnetically Latched

Product History Time Line for A202 Lighting Contactor (Electrically Held/Magnetically Latched)

Size	Amperes	Model	1965	1970	1975	1980	1985	1990	1995	2000	Present
Size 1	30										
Size 2	60										
Size 3	100										
Size 4	200	J									
Size 4	200	K									

Replacement Capabilities

A202 Kits for 30 to 200A

Description	Poles	30A	60A	100A	200A- Model J	$\begin{aligned} & \text { 200A- } \\ & \text { Model K } \end{aligned}$
Contact kit	2	373B331G07	373B331G11	626B187G12	626B187G16	5250C81G16
	3	373B331G09	373B331G12	626B187G13	626B187G17	5250C81G17
	4	373B331G09	(3)	(5)	(7)	5250C81G18
	5	373B331G10	(4)	(6)	(8)	5250C81G19
Arc box	2,3,4	6714C74G03	6714C74G07	6714C74G09	6714C74G11	6714C74G11
	5	6714C74G06	6714C74G08	6714C74G10	6714C74G12	6714C74G12
Cross bar	2-3	-	672B788G32	672B788G36	672B788G36	672B788G40
	4-5	-	672B788G34	672B788G38	672B788G38	-
Upper base (for single rated coils only)	2-3	-	672B788G33	672B788G37	672B788G37	672B788G52
	4-5	-	672B788G35	672B788G39	672B788G39	-
Lower base	2-3	-	1250C33G09	1250C33G03	1250C33G03	1250C33G10
	4-5	-	1250C33G05	1250C33G06	1250C33G06	-
Electrically Held Only						
K0 spring (pack of 10)	All	-	503C796G01	503C796G02	503C796G02	672B788G50
Terminal line/load (pack of 3)	All	-	371B870G03	372B357G12	372B357G13	372B357G13

Notes

(1) For 200A A202 Magnetically Latched Lighting Contactors, order three-pole contact kit style 672B788G07
${ }^{2}$ 2) Model K replaces Model J , offering superior design and life characteristics. Renewal parts are different. Use parts for proper model only.
(3) Use quantity two-373B331G11 (two-pole kit).
(4) Use one each of 373B331G11 (two-pole kit) and 373B331G12 (three-pole kit).
(5) Use quantity two-626B187G12 (two-pole kit).
(6) Use one each of 626B187G12 (two-pole kit) and 626B187G13 (three-pole kit).
(7) Use quantity two-626B187G16 (two-pole kit).
(8) Use one each of 626B187G16 (two-pole kit) and 626B187G17 (three-pole kit).

AC Coils Electrically Held

Voltage	Hz	$\begin{aligned} & \text { 30A } \\ & \text { Two-, Three-, Four-Pole } \end{aligned}$	Five-Pole	60A Two-, Three-Pole	Four-, Five-Pole
120/110	60/50	505C806G01	505C808G01	505C806G01	505C818G01
208	60	505C806G02	505C808G02	505C806G02	505C818G02
600/550	60/50	505C806G05	505C808G05	505C806G05	505C818G05
380	50	505C806G07	505C808G07	505C806G07	505C818G07
240/220	60/50	505C806G12	505C808G12	505C806G12	505C818G12
480/440	60/50	505C806G13	505C808G13	505C806G13	505C818G13
24	60	505C806G16	N/A	505C806G16	505C818G15
227	60	505C806G18	505C808G16	505C806G18	505C818G16
240/480 (1)	60/60	505C806G03	505C808G03	505C806G03	505C818G03
120/240 (1)	60/60	505C806G10	505C808G10	505C806G10	505C818G10

AC Coils Electrically Held, continued

Voltage	Hz	100 and 200A-M Two-, Three-Pole	Four-, Five-Pole	$\begin{aligned} & \text { 200A—Model K (2) } \\ & \text { Two-, Three-Pole } \end{aligned}$	Four-, Five-Pole
120/110	60/50	505C633G01	505C635G01	52050C79G01	5250C80G01
208	60	505C633G02	505C635G02	52050C79G02	5250C80G02
600/550	60/50	505C633G05	505C635G05	52050C79G05	5250C80G05
380	50	505C633G07	505C635G07	52050C79G07	5250C80G07
240/220	60/50	505C633G12	505C635G12	52050C79G12	5250C80G12
480/440	60/50	505C633G13	505C635G13	52050C79G13	5250C80G13
24	60	505C633G34	N/A	52050C79G34	N/A
227	60	505C633G14	N/A	52050C79G14	N/A
240/480 (1)	60/60	505C633G03	505C635G03	52050C79G03	5250C80G03
120/244 (1)	60/60	505C633G10	505C635G10	52050C79G10	5250C80G10

Notes

(1) Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.
(2) Model K replaces Model J. Renewal parts are different. Use parts for proper model only.

AC Coils Magnetically Latched

Voltage	Hz	Two-Pole	Three-Pole	Four-Pole	Five-Pole
30A					
110/120	50/60	7874A93G01	7874A93G01	7874A93G01	7874A89G01
208/240	50/60	7874A93G02	7874A93G02	7874A93G02	7874A89G02
277	50/60	7874A93G03	7874A93G03	7874A93G03	7874A89G03
440/480	50/60	7874A93G04	7874A93G04	7874A93G04	7874A89G04
575	50/60	7874A93G05	7874A93G05	7874A93G05	7874A89G05
60A					
110/120	50/60	7874A93G01	7874A93G01	7874A87G01	7874A87G01
208/240	50/60	7874A93G02	7874A93G02	7874A87G02	7874A87G02
277	50/60	7874A93G03	7874A93G03	7874A87G03	7874A87G03
440/480	50/60	7874A93G04	7874A93G04	7874A87G04	7874A87G04
110/120	50/60	7874A93G01	7874A93G01	7874A87G01	7874A87G05
100 and 200A					
110/120	50/60	7874A85G01	7874A85G01	7874A83G01	7874A83G01
208/240	50/60	7874A85G02	7874A85G02	7874A83G02	7874A83G02
277	50/60	7874A85G03	7874A85G03	7874A83G03	7874A83G03
440/480	50/60	7874A85G04	7874A85G04	7874A83G04	7874A83G04
550/575	50/60	7874A85G05	7874A85G05	7874A83G05	7874A83G05

Terminals (Line and Load)

Size	Two-Pole		Three-Pole		Four-Pole		Five-Pole	
30A	N/A		N/A		N/A		N/A	
60A	179C755G17		179C755G16		$179 C 755 G 17{ }^{(1)}$		179C755G16 + G17 ${ }^{2}$	
100A	179C755G19		$179 C 755 G 18$		179C755G19 (1)		179C755G18 + G19 ${ }^{2}$	
200 A	Model K	Model J						
	179C755G28	179C755G31	179C755G27	179C755G30	$179 \mathrm{C} 755 \mathrm{G28}{ }^{1}$	179C755G3 ${ }^{\text {(1) }}$	179C755G27 + G28 ${ }^{2}$	179C755G30 + G3 [2)

Other Accessories

Size	Control Module (Rectifier)
30 to 200A	3915B98G01

Notes

(1) Order quantity of two for four-pole design.
(2) Group numbers for the five-pole terminals represent the combination of the two-pole and three-pole number.

V201 and V200 Vacuum Contactors and Starters

 Originally a Westinghouse Product

Size 4 Vacuum Contactors

Freedom Series-
NEMA and IEC
Originally a Cutler-Hammer Product

Product Description
The Cutler-Hammer Freedom Series starters and contactors feature a compact space-saving design using state-of-the-art technology and the latest in high strength, impact and temperature-resistant insulating materials. Starters and contactors are available in two rating/configuration styles-NEMA (National Electrical Manufacturers Association) and IEC (International
Electrotechnical
Commission). The NEMA
devices are sized based on traditional NEMA classifications and the IEC devices on international ratings. Internationally rated starters and contactors, as compared to NEMA devices, generally are physically downsized to provide higher ratings in a smaller package.

Product History Time Line for Freedom CN15 and AN15

Note: See contactor/starter nameplate to determine Series A1, B1 or C1.

Replacement Capabilities
 NEMA Sizes 00, 0, 1, 2 and 3

NEMA Sizes 00 and 0-See Contactor/Starter Nameplate to Determine Series A1, B1 or C1

Description Renewal Parts Publication Number		NEMA Size 00-0 Series A1 Part Number None	NEMA Size 00 Series B1 Part Number None	NEMA Size 00 Series $\mathbf{C 1}$ Part Number None	NEMA Size 0 Series B1 Part Number None	NEMA Size 0 Series C1 Part Number None
Contact Kits						
Two-pole		(1)	(1)	(1)	(1)	(1)
Three-pole		(1)	(1)	(1)	(1)	(1)
Four-pole		(1)	(1)	(1)	(1)	(1)
Five-pole		(1)	(1)	(1)	(1)	(1)
Magnet Coils	Coi					
$120 \mathrm{~V}, 60 \mathrm{~Hz}$ or $110 \mathrm{~V}, 50 \mathrm{~Hz}$	A	9-2650-1	9-2875-1	9-2875-1	9-2876-1	9-2876-1
$240 \mathrm{~V}, 60 \mathrm{~Hz}$ or 220V, 50 Hz	B	9-2650-2	9-2875-2	9-2875-2	9-2876-2	9-2876-2
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ or 440V, 50 Hz	C	9-2650-3	9-2875-3	9-2875-3	9-2876-3	9-2876-3
$600 \mathrm{~V}, 60 \mathrm{~Hz}$ or $550 \mathrm{~V}, 50 \mathrm{~Hz}$	D	9-2650-4	9-2875-4	9-2875-4	9-2876-4	9-2876-4
$208 \mathrm{~V}, 60 \mathrm{~Hz}$	E	9-2650-5	9-2875-5	9-2875-5	9-2876-5	9-2876-5
$277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	9-2650-13	9-2875-12	9-2875-12	9-2876-12	9-2876-12
208/240V, 60 Hz	J	-	9-2875-37	9-2875-37	9-2876-17	9-2876-17
$240 \mathrm{~V}, 50 \mathrm{~Hz}$	K	9-2650-12	9-2875-11	9-2875-11	9-2876-11	9-2876-11
$380-415 \mathrm{~V}, 50 \mathrm{~Hz}$	L	9-2650-6	9-2875-6	9-2875-6	9-2876-6	9-2876-6
$380 \mathrm{~V}, 50 \mathrm{~Hz}$	L	-	-	-	-	-
$415 \mathrm{~V}, 50 \mathrm{~Hz}$	M	-	-	-	-	-
$550 \mathrm{~V}, 50 \mathrm{~Hz}$	N	-	-	-	-	-
$24 \mathrm{~V}, 60 \mathrm{~Hz}-24 \mathrm{~V}, 50 \mathrm{~Hz}$	T	-	9-2875-36	9-2875-36	9-2876-36	9-2876-36
$24 \mathrm{~V}, 60 \mathrm{~Hz}$	T	9-2650-7	-	-	-	-
$24 \mathrm{~V}, 50 \mathrm{~Hz}$	U	9-2650-14	9-2875-36	9-2875-36	9-2876-36	9-2876-36
$32 \mathrm{~V}, 50 \mathrm{~Hz}$	V	9-2650-9	9-2875-16	9-2875-16	9-2876-16	9-2876-16
$48 \mathrm{~V}, 60 \mathrm{~Hz}$	W	9-2650-8	9-2875-8	9-2875-8	9-2876-8	9-2876-8
$48 \mathrm{~V}, 50 \mathrm{~Hz}$	Y	9-2650-10	9-2875-9	9-2875-9	9-2876-9	9-2876-9
Magnet Frame Armature						
Lower magnet frame		(1)	(1)	(1)	(1)	(1)
Upper magnet frame		(1)	(1)	(1)	(1)	(1)

Note
(1) Replace with complete contactor.

NEMA Sizes 1, 2 and 3-See Contactor/Starter Nameplate to Determine Series A1 or B1

NEMA Sizes 4, 5 and 6-See Contactor/Starter Nameplate to Determine Series A1 or B1

NEMA Sizes 7 and 8-See Contactor/Starter Nameplate to Determine Series A1 or B1

Note
(1) Contact Standard Open Control Aftermarket at 1-800-535-8992 for assistance.

Contactors, Starters and Brakes

IEC Sizes A-F-See Contactor/Starter Nameplate to Determine Series A1, B1 or C1

13

Notes

(1) Non-encapsulated coils.
(2) Replace with complete contactor.

IEC Sizes G and H-See Contactor/Starter Nameplate to Determine Series A1 and B1

IEC Sizes J and K—See Contactor/Starter Nameplate to Determine Series A1 and B1

13

Contactors, Starters and Brakes

IEC Sizes L, M and N

Contactors, Starters and Brakes

IEC Sizes P, R and S

		IEC Size P	IEC Size R	IEC Size S
Description		Part Number	Part Number	Part Number
Renewal Parts Publication Number		22278	22278	22278
Contact Kits	Size	6-294	6-288	6-286
Magnet Coils	Coil			
$120 \mathrm{~V}, 60 \mathrm{~Hz}$ or 110V, 50 Hz	A	9-1891-1	9-1891-1	9-1891-1
$200 \mathrm{~V}, 50 \mathrm{~Hz}$ or 118V, 60 Hz	E	-	-	-
$240 \mathrm{~V}, 60 \mathrm{~Hz}$ or $220 \mathrm{~V}, 50 \mathrm{~Hz}$	B	9-1891-2	9-1891-2	9-1891-2
$254 \mathrm{~V}, 50 \mathrm{~Hz}$ or $277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	-	-	-
$380 \mathrm{~V}, 50 \mathrm{~Hz}$ or $415 \mathrm{~V}, 60 \mathrm{~Hz}$	L	-	-	-
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ or 440V, 50 Hz	C	9-1891-3	9-1891-3	9-1891-3
$600 \mathrm{~V}, 60 \mathrm{~Hz}$ or $550 \mathrm{~V}, 50 \mathrm{~Hz}$	D	9-1891-4	9-1891-4	9-1891-4
$208 \mathrm{~V}, 60 \mathrm{~Hz}$	E	9-1891-13	9-1891-13	9-1891-13
$277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	9-1891-26	9-1891-26	9-1891-26
$240 \mathrm{~V}, 50 \mathrm{~Hz}$	K	9-1891-20	9-1891-20	9-1891-20
$380 \mathrm{~V}, 50 \mathrm{~Hz}$	L	9-1891-14	9-1891-14	9-1891-14
$415 \mathrm{~V}, 50 \mathrm{~Hz}$	M	9-1891-21	9-1891-21	9-1891-21
$24 \mathrm{~V}, 60 \mathrm{~Hz}$	T	9-1891-15	9-1891-15	9-1891-15
Overload Relays				
Reference C316 overload relays				
Magnet Frame Armature				
Lower magnet frame		48-1030-2	48-1030-2	48-1030-2
Upper magnet frame		48-1029-4	48-1029-4	48-1029-4

IEC Size T, U and V

		IEC Size T	IEC Size U	IEC Size V
Description		Part Number	Part Number	Part Number
Renewal Parts Publication Number		22275	22276	22586
Contact Kits	Size	6-621	6-622	6-601
Magnet Coils	Coil			
$120 \mathrm{~V}, 60 \mathrm{~Hz}$ or 110V, 50 Hz	A	9-3006	9-3006	9-2698
$200 \mathrm{~V}, 50 \mathrm{~Hz}$ or $118 \mathrm{~V}, 60 \mathrm{~Hz}$	E	9-3006-5	9-3006-5	-
$240 \mathrm{~V}, 60 \mathrm{~Hz}$ or 220V, 50 Hz	B	9-3006-2	9-3006-2	9-2698-2
$254 \mathrm{~V}, 50 \mathrm{~Hz}$ or $277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	9-3006-6	9-3006-6	9-2698-2
$380 \mathrm{~V}, 50 \mathrm{~Hz}$ or $415 \mathrm{~V}, 60 \mathrm{~Hz}$	L	9-3006-7	9-3006-7	9-2698-6
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ or 440V, 50 Hz	C	9-3006-3	9-3006-3	9-2698-3
$600 \mathrm{~V}, 60 \mathrm{~Hz}$ or $550 \mathrm{~V}, 50 \mathrm{~Hz}$	D	9-3006-4	9-3006-4	9-2698-4
$208 \mathrm{~V}, 60 \mathrm{~Hz}$	E	-	-	9-2698-5
$277 \mathrm{~V}, 60 \mathrm{~Hz}$	H	-	-	-
$240 \mathrm{~V}, 50 \mathrm{~Hz}$	K	-	-	-
$380 \mathrm{~V}, 50 \mathrm{~Hz}$	L	-	-	-
$415 \mathrm{~V}, 50 \mathrm{~Hz}$	M	-	-	-
$24 \mathrm{~V}, 60 \mathrm{~Hz}$	T	-	-	-

Overload Relays

Reference C316 overload relays

Magnet Frame Armature			
Lower magnet frame	-	-	-
Upper magnet frame	-	-	-

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 1.

Motor Control

IT. Electromechanical NEMA

NEMA Full Voltage Non-reversing Starter, Size 0

Product Description

The Cutler-Hammer Intelligent Technologies ${ }^{\circledR}$ (IT.) electromechanical starter from Eaton's electrical business consists of an IT. electromechanical contact block or contactor and an IT. electromechanical solid-state overload relay as a full voltage non-reversing (FVNR) or a full voltage reversing (FVR) device. Size 00 to Size 5 Starters are factory or field assembled.

Product History Time Line for IT. Electromechanical NEMA

| Product 2000 | 2005 | Present | |
| :--- | :---: | :---: | :---: | :---: |
| IT. Electromechanical NEMA | | | |

Replacement Capabilities

	Replacements for NEMA Contacts and Starters		
	NEMA Size	Description	Catalog Number
Contact Kits	1	40A	EMHCKT40 ${ }^{1}$
	1	50A	EMHCKT50 ${ }^{1}$
	2	65 A	EMHCKT65 ${ }^{1}$
	2	85A	EMHCKT85 ${ }^{\text {(1) }}$
	2	100A	EMHCKT100 ${ }^{(1)}$
	3,4	125A	EMCKT125
	3,4	160A	EMCKT160
$+18$	3,4	200A	EMCKT200
	5	250A	EMCKT250
	5	315A	EMCKT315
	5	400A	EMCKT400
Coils ${ }^{2}$	1	Coil	EMCC
	2	Coil	EMCD
	3,4	Coil	EMCE
	5	Coil	EMCF
DIN Rail Catch	00, 0, 1	Catch with leaf spring and pad	EMDRCB
	2	Catch with leaf spring and pad	EMDRCD
Lug Kits	1	Lug	EMLUGKTC
	2	Lug	EMLUGKTD
	3,4	Lug	EMLUGKTE
	5	Horizontal box lug kit	EMLUGKTFA
	5	Vertical box lug kit	EMLUGKTFB
	5	Dual lug kit	EMLUGKTFC
Overload Busbars	00, 0	For contactors and starters	EMBBB
	1	For starters	EMBBC
	1	For reversing contactors and reversing starters	EMBBRC
	2	For starters	EMBBD
	2	For reversing contactors and reversing starters	EMBBRD
	3,4	For starters	EMBBE
	3,4	For reversing contactors and reversing starters	EMBBRE
	5	Overload relay	EMBBOF
	Notes (1) $\mathrm{H}=\mathrm{H}$ (2) For r	en.	

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 2.

Contactors, Starters and Brakes

IT. Electromechanical IEC

Product Description

The Cutler-Hammer Intelligent Technologies (IT.) electromechanical starter from Eaton's electrical business consists of an IT. electromechanical contact block or contactor and IT. electromechanical solid-state overload relay as a full voltage non-reversing (FVNR) or full voltage reversing (FVR) device. A-Frame (27 mm) to F-Frame (140 mm) Starters are factory or field assembled.

Product History Time Line for IT. Electromechanical IEC

| Product 2000 | 2005 | Present | |
| :--- | :---: | :---: | :---: | :---: |
| IT. Electromechanical IEC | | | |

Replacement Capabilities

	Replacements for IEC Contacts and Starters		
	Frame Size	Description	Catalog Number
Contact Kits	C	40A	EMCKT40
	C	50A	EMCKT50
	D	65 A	EMCKT65
	D	85A	EMCKT85
	D	100A	EMCKT100
	E	125A	EMCKT125
	E	160A	EMCKT160
	E	200A	EMCKT200
	F	250A	EMCKT250
	F	315A	EMCKT315
	F	400A	EMCKT400
Coils ${ }^{(2)}$	C	Coil	EMCC
	D	Coil	EMCD
	E	Coil	EMCE
	F	Coil	EMCF
DIN Rail Catch	B, C	Catch with leaf spring and pad	EMDRCB
	D	Catch with leaf spring and pad	EMDRCD
Lug Kits	C	Lug	EMLUGKTC
	D	Lug	EMLUGKTD
	E	Lug	EMLUGKTE
	F	Horizontal box lug kit	EMLUGKTFA
	F	Vertical box lug kit	EMLUGKTFB
	F	Dual lug kit	EMLUGKTFC
Overload Busbars	B	For contactors and starters	EMBBB
	C	For starters	EMBBC
	C	For reversing contactors and reversing starters	EMBBRC
	D	For starters	EMBBD
	D	For reversing contactors and reversing starters	EMBBRD
	E	For starters	EMBBE
	E	For reversing contactors and reversing starters	EMBBRE
	F	Overload relay	EMBBOF
	Note		

(1) For reversing contactors and starters, order two.

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 2.

XTIEC and NEMA Power Control

XT Family of Contactors

Product Description

Eaton's line of $\boldsymbol{X T}$ Contactors and Starters includes nonreversing and reversing contactors, overload relay and a variety of related accessories. Because XT meets NEMA, IEC, UL, CSA, CCC and CE standards, it is the perfect product solution for applications all over the world. The compact, space saving and easy to install $\boldsymbol{X T}$ line of contactors and starters is the efficient and effective solution for customer applications from 7A to 2000A and NEMA 0-5.

Product History Time Line for XT Power Control

Replacement Capabilities

Replacement Coils

Voltage	Coil Suffix	Catalog Number
Frame C-Size 1		
110/50 120/60	A	XTCERENCOILCA
110-130 Vdc	AD	XTCERENCOILCAD
220/50 240/80	B	XTCERENCOILCB
200-240 Vdc	BD	XTCERENCOILCBD
415/50 460/60	C	XTCERENCOILCC
550/50 600/60	D	XTCERENCOILCD
208/60	E	XTCERENCOILCE
230/50	F	XTCERENCOILCF
190/50 220/60	G	XTCERENCOILCG
240/50 277/60	H	XTCERENCOILCH
380/50 440/60	L	XTCERENCOILCL
400/50	N	XTCERENCOILCN
380/60	P	XTCERENCOILCP
12/50 12/60	R	XTCERENCOILCR
$12-14 \mathrm{Vdc}$	RD	XTCERENCOILCRD
24/5024/60	T	XTCERENCOILCT
$24-27 \mathrm{Vdc}$	TD	XTCERENCOILCTD
24/50 42/50	U	XTCERENCOILCU
48/60	W	XTCERENCOILCW
48-60 Vdc	WD	XTCERENCOILCWD
48/50	Y	XTCEBENCOILCY
Frame D-Size 2		
110/50 120/60	A	XTCERENCOILDA
110-130 Vdc	AD	XTCERENCOILDAD
220/50 240/80	B	XTCERENCOILDB
$200-240 \mathrm{Vdc}$	BD	XTCERENCOILDBD
415/50 480/60	C	XTCERENCOILDC
550/50 600/60	D	XTCERENCOILDD
208/60	E	XTCERENCOILDE
230/50	F	XTCERENCOILDF
190/50 220/60	G	XTCERENCOILDG
240/50 277/60	H	XTCERENCOILDH
380/50 440/60	L	XTCERENCOILDL
400/50	N	XTCERENCOILDN
380/60	P	XTCERENCOILDP
12/50 12/60	R	XTCERENCOILOR
12-14 Vdc	RD	XTCERENCOILDRD
24/50 24/60	T	XTCERENCOILDT
$24-27 \mathrm{Vdc}$	TD	XTCERENCOILDTD
24/50 42/50	U	XTCERENCOILDU
48/60	W	XTCERENCOILDW
$48-60 \mathrm{Vdc}$	WD	XTCERENCOILDWD
48/50	Y	XTCERENCOILDY

Replacement Coils, continued

Voltage	Coil Suffix	Catalog Number
Frame F-Size 3		
$110 / 50120 / 60$	A	XTCERENCOILFA
$110-130 \mathrm{Vdc}$	AD	XTCERENCOILFAD
$220 / 50240 / 60$	B	XTCERENCOILFB
$200-240 \mathrm{Vdc}$	BD	XTCERENCOILFBD
$415 / 50480 / 60$	C	XTCERENCOILFC
$550 / 50600 / 60$	D	XTCERENCOILFD
$208 / 60$	E	XTCERENCOILFE
$230 / 50$	F	XTCERENCOILFF
$190 / 50220 / 60$	G	XTCERENCOILFG
$240 / 50277 / 60$	H	XTCERENCOILFH
$380 / 50440 / 60$	L	XTCERENCOILFL
$400 / 50$	N	XTCERENCOILFN
$380 / 60$	P	XTCERENCOILFP
$12 / 5012 / 60$	R	XTCERENCOILFR
$24 / 5024 / 60$	T	XTCERENCOILFT
$24-27 \mathrm{Vdc}$	TD	XTCERENCOILFTD
$24 / 50$	U	XTCERENCOILFU
$42 / 5048 / 60$	W	XTCERENCOILFW
$48-60 \mathrm{Vdc}$	WD	XTCERENCOILFWD
$48 / 50$	Y	XTCERENCOILFY
$F r a$		

Frame G-Size 4

$100-120 \mathrm{~V} 50 / 60$	A	XTCERENCOILGA
$110-130 \mathrm{Vdc}$	AD	XTCERENCOILGAD
$190-240 \mathrm{~V} 50 / 60$	B	XTCERENCOILGB
$200-240 \mathrm{Vdc}$	BD	XTCERENCOILGBD
$480-500 \mathrm{~V} 50 / 60$	C	XTCERENCOILGC
$380-440 \mathrm{~V} 50 / 60$	L	XTCERENCOILGL
$24 / 5024 / 60$	T	XTCERENCOILGT
$24-27 \mathrm{Vdc}$	TD	XTCERENCOILGTD
$42-48 \mathrm{~V} 50 / 60$	W	XTCERENCOILGW
$48-60 \mathrm{Vdc}$	WD	XTCERENCOILGWD
Frame L-Size 5 ${ }^{1}$		
$110-250 \mathrm{Vac} / \mathrm{Ndc}$	A	XTCERENCOILLA
$250-500 \mathrm{~V} 40-60$	C	XTCERENCOILLC
$24-48 \mathrm{Vdc}$	TD	XTCERENCOILLTD
$48-110 \mathrm{Vac} / \mathrm{Vdc}$	Y	XTCERENCOILLY
Frame M ${ }^{1}$		
$110-250 \mathrm{Vac} / \mathrm{Ndc}$	A	XTCERENCOILMA
$250-500 \mathrm{~V} 40-60$	C	XTCERENCOILMC
$24-48 \mathrm{Vdc}$	TD	XTCERENCOILMTD
$48-110 \mathrm{Vac} / \mathrm{Vdc}$	Y	XTCERENCOILMY
Frame N ${ }^{1}$	Y	
$110-250 \mathrm{Vac} / \mathrm{Vdc}$	A	XTCERENCOILNA
$250-500 \mathrm{~V} 40-60$	C	XTCERENCOILNC
$48-110 \mathrm{Vac} / \mathrm{Ndc}$	Y	XTCERENCOILNY

Replacement Contact Kits

For use with...	Catalog Number
XTAE040D-XTAE065D	XTCERENCONTACTD
XTCE185L-XTCE250L	XTCERENCONTACTL
XTCE300M-XTCE500M	XTCERENCONTACTM

Replacement Vacuum Tube Assembly

For use with...	Catalog Number
XTCE580N	XTCERENVACT580
XTCE650N	XTCERENVACTBB0
XTCE750N	XTCERENVACT750
XTCE820N	XTCERENVACT820

Replacement Arc Chambers

For use with...	Catalog Number
XTCE185L	XTCERENARC185
XTCE225L	XTCERENARC225
XTCE250L	XTCERENARC250
XTCE300M	XTCERENARC300
XTCE400M	XTCERENARC400
XTCE500M	XTCERENARC500

Note

(1) Electronic modules including coils.

Advantage ${ }^{\text {TM }}$
 Originally a Westinghouse Product

Advantage Starter

Product Description

Setting a new standard in motor control, revolutionary in design, Advantage motor starters employ state-of-theart technology in solving motor control application problems that have existed for ages. Customer focus group input and 66,000 man-hours of engineering ingenuity have been combined to create a motor starter that dramatically extends operating life in a physical space requirement one half the size of conventional motor starters

Product History Time Line for Advantage Contactors and Starters

Size	1991	1995	2000	Present
Sizes 1-6				

Replacement Capabilities

	Replacements for Contact Kits and Coils	
	Description	Catalog Number
Contact Kits	Replacement contact kit, size single, three-pole	WCK13
	Replacement contact kit, size two, three-pole	WCK23
	Replacement contact kit, size three, three-pole	WCK33
	Replacement contact kit, size four, three-pole	WCK43
	Replacement contact kit, size five, three-pole	WCK53
	Replacement contact kit, size six, three-pole	WCK63
Coils	Size one and two, 110/120V, 60 Hz	WCOIL12F
	Size three and four, 110/120V, 60 Hz	WCOIL34F
	Size five and six, 110/120V, 60 Hz	WCOIL56F

Advantage/A200 Series Support and Transition to Freedom-C400 Series Power Control New Technologies
Eaton has consolidated the Advantage and Advantage+ product lines into a single offering effective July 19, 2013. This product consolidation will ensure Eaton's ability to continue supporting the Advantage installed base.

The Advantage+ series features:

- Enhanced control board circuitry
- Same footprint as the Advantage series
- No change in accessories
- Backwards compatibility of control boards for NEMA Sizes 3-6

As a result of the consolidation, Advantage series part numbers will be replaced by the Advantage+ series.

However, please note the following:

- Replacement control boards for Advantage NEMA Sizes 1L, 1 \& 2 are not interchangeable; therefore, Eaton will continue to manufacture these replacement boards
- Overload boards are no longer available. Overloads are to be replaced with a complete starter
- All other sizes will accept an Advantage + replacement board. Please see the table below for additional details

Replacements for Control and Overload Boards

Offering	Replaced By
Advantage contactors (sizes 1L-6)	Advantage+ contactors (sizes 1L-6)
Advantage starters (sizes 1L-6)	Advantage+ starters (sizes 1L-6)
Advantage overload relays	Advantage+ starter
Replacement control boards (Sizes 1L, 1, 2)	No change: continue to order Advantage
Replacement control boards (Size 3, 4, 5, 6, 5DP, 6DP)	Advantage+ control boards
Accessories	No change

Technology Upgrades

This product is currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 2.

C440 Electronic Overload	Freedom Series Starters-C440 Electronic Overload		
	Description (With Ground Fault Protection)	Overload Range (Amperes)	Catalog Number
184	NEMA Size 1 starter	1-5	AN19DN0A5G005
	NEMA Size 1 starter	4-20	AN19DN0A5G020
	NEMA Size 2 starter	9-45	AN19GN0A5G045
	NEMA Size 3 starter	20-100	AN19KNOA5G100
	NEMA Size 4 starter	28-140	AN19NNOA5G140
	NEMA Size 5 starter	60-300	AN19SNOA5G300

$\overline{\text { C441 Motor Insight }}$ Freedom Series Contactor-C441 Motor Insight

	Overload Range (Amperes)	Freedom Contactor Catalog Number		Motor Insight Catalog Number (no display on unit)	Motor Insight Display Catalog Number (in the door mounting)
	1-9	CN15DN3AB	Size 1	C4410109NOUI	C4411 \& D77E-0PIP100
	5-90	CN15DN3AB	Size 1	C4410590NOUI	C4411 \& D77E-0PIP100
000	5-90	CN15GN3AB	Size 2	C4410590NOUI	C4411 \& D77E-0PIP100
	5-90	CN15KN3A	Size 3	C4410590NOUI	C4411 \& D77E-0PIP100
	60-135	CN15NN3A	Size 4	C4410109NOUI \& C441CTKIT150	C4411 \& D77E-0PIP100
	120-270	CN15SN3A	Size 5	C4410109NOUI \& C441CTKIT300	C4411 \& D77E-0PIP100

Replacement Circuit Boards

Description	Existing Starter	Replacement Circuit Board
Standard NEMA Size 1L starter board 60 Hz	W200MLCFC	WCBSLF
Standard NEMA Size 1 starter board 60 Hz	W200M1CFC	WCBS1F
Standard NEMA Size 2 starter board 60 Hz	W200M2CFC	WCBS2F
Advantage+ NEMA Size 1L starter board 60 Hz	W+200MLCFC	W+CBSLF
Advantage+ NEMA Size 1 starter board 60 Hz	W+200M1CFC	W+CBS1F
Advantage+ NEMA Size 2 starter board 60 Hz	W+200M2CFC	W+CBS2F
Standard or Advantage+ NEMA Size 3 starter board 60 Hz	W200M3CFC or W+200M3CFC	W+CBS3F
Standard or Advantage+ NEMA Size 4 starter board 60 Hz	W200M4CFC or W+200M4CFC	W+CBS4F
Standard or Advantage+ NEMA Size 5 starter board 60 Hz	W200M5CFC or W+200M5CFC	W+CBS5F
Standard or Advantage+ NEMA Size 6 starter board 60 Hz	W200M6CFC or W+200M6CFC	W+CBS6F

Motor Control

Contactors, Starters and Brakes

Definite Purpose

Originally a Cutler-Hammer Product
Product History Time Line for Definite Purpose, Bulletin 9560, 9584 and 9586

Replacement Capabilities

Contact Kits for Types 9560, 9584, 9586

Description	Contact Kit Part Number					
	Contactor or Starter Size, Ampere Rating					
	12A Inductive 15A Resistive	25, 30A Inductive 30, 40A Resistive	40A Inductive 50A Resistive	50, 60A Inductive 60, 75A Resistive	75A Inductive 90A Resistive	90A Inductive 120A Resistive
Single-pole kit	(1)	6-331-3	6-331-4	-	6-331-8	6-331-8
Three-pole kit	(1)	-	-	6-331-39	-	-

Magnetic Coils for Types 9560, 9584 and 9586

	Coil Volt		Coil Part Number Ampere Rating		
Coil Suffix	60 Hz	50 Hz	12, 25 and 30A Inductive 15, 30 and 40A Resistive	40A Inductive 50A Resistive	50, 60, 75 and 90A Inductive 60, 75, 90 and 120A Resistive
-7	-	380	(1)	(1)	(1)
-47	277	-	(1)	(1)	(1)
-49	104-120	104-120	(1)	(1)	(1)
-50	208-240	208-240	(1)	(1)	(1)
-69	24	24	(1)	(1)	(1)
-72	480	480	(1)	(1)	(1)
-74	600	600	(1)	(1)	(1)

Technology Upgrades

Definite Purpose Technology Upgrades

Type	A25	C25	C32	B25
9560 Contactors	-	$15-90 \mathrm{~A}$	$120-350 \mathrm{~A}$	-
9584 Starters	-	-	-	$25-40 \mathrm{~A}$
9586 Starters	$25-60 \mathrm{~A}$	-	-	-

Note
(1) Replace with new Definite Purpose contactor or starter.

Renewal Parts

Renewal Contact Kits for C25 Definite Purpose Contactors

- Replace complete contactor for:
- C25A_
- C25B_
- C25C_
- C25D_

Renewal Contact Kits for C25 Definite Purpose Contactors

	Single-Pole Kit Catalog Number	Two-Pole Kit Part Number	Three-Pole Kit Part Number
C25FNF250	-	$6-65-5$	-
C25FNF350	-	-	$6-65-6$
C25FNF260	-	$6-65-7$	-
C25FNF360	-	-	$6-65-8$
C25FNF275	-	$6-65-20$	-
C25FNF375	-	-	$6-65-19$
C25GNF290	-	-	-
C25GNF390	-	-	-
C25HNE3120	-	-	$6-43-6$
C25KNE3200	-	-	$6-288$
C25KNE3300	-	-	$6-286$
C25LNE3360	-	-	$6-45-2$

Product Selection

AC Coils

AC Coil Voltage	Frequency	Coil Suffix	Part Number
15, 25, 30 and 40A - Two- and Three-Pole (Series D1 and E1)			
12	60	R	9-3185-5
24		T	9-3185-6
110/120		A	9-3185-1
208/240		B	9-3185-2
220/240	60	J	9-3185-10
440/480		C	9-3185-3
550/600		D	9-3185-4
277		H	9-3185-7
380/415	50	L	9-3185-8
15, 25, 30 and 40A - Two- and Three-Pole (Series C1)			
12	60	R	9-3125-5
24		T	9-3125-6
104/120		A	9-3125-1
208/240	50	B	9-3125-2
440/480		C	9-3125-3
550/600		D	9-3125-4
277	60	H	9-3125-8
380/415	50	L	9-3125-8
15, 25, 30 and 40A - Two- and Three-Pole (Series D1 and E1)			
12	60	R	9-3252-5
24		T	9-3252-6
110/120		A	9-3252-1
208/240		B	9-3252-2
220/240	60	J	9-3252-10
440/480		C	9-3252-3
550/600		D	9-3252-4
277		H	9-3252-7
380/415	50	L	9-3252-8
50A - Two- and Three-Pole (Series D1 and E1)			
12	60	R	9-3186-5
24		T	9-3186-6
110/120		A	9-3186-1
208/240		B	9-3186-2
220/240	60	J	9-3186-10
440/480		C	9-3186-3
550/600		D	9-3186-4
277		H	9-3186-7
380/415	50	L	9-3186-8

Motor Control

DC Operation

These DC coils have separate pick-up and seal windings. The pick-up winding must be connected to an early break normally closed auxiliary contact block and provide the magnetic force required to close the magnet. As the magnet approaches the closed position, the early break normally closed contact is opened and the holding coil is inserted in series with the pick-up winding.

The early break contact block (C320KGD1) has to be attached to the side of the contactor, taking up one of the positions available for add-on auxiliary contact blocks.

DC Coil Elementary Diagram - Contactors and Starters

DC Coils ${ }^{\text {(1) }}$

DC Coil Voltage	Coil Suffix	Part Number
15, 25, 30 and 40A - Two- and Three-Pole (Series D1 and E1)		
12	1R	9-3254-2
24	1T	9-3254-3
48	1W	9-3254-4
120	1A	9-3254-5
50A - Two- and Three-Pole (Series D1 and E1)		
12	1R	9-3255-2
24	1T	9-3255-3
48	1W	9-3255-4
120	1A	9-3255-5
15, 25, 30 and 40A - Two- and Three-Pole (Series C1)		
12	1R	9-3126-1
24	1T	9-3126-2
48	1W	9-3126-3
60 and 75A - Two- and Three-Pole; 25, 30 and 40A - Four-Pole (Series C1)		
12	1R	9-3257-1
24	1 T	9-3257-2
48	1W	9-3257-3
120	1A	9-3257-4

Note

(1) DC coils require an early break NC auxiliary contact C320KGD1 (1NCI) or C320KGD2 (1NO$1 \mathrm{NCI})$. Order separately, not included with replacement coil.

JF Autostarter

Originally a Westinghouse Product

Start Kit-Style Number 550D409G18

Run Kit-Style Number 550D409G19

Grid Kit-Style Number 3354D90G10

Product Description

13
Kits contain a complete set of moving contacts, stationary contacts and springs.

Product History Time Line for JF Autostarter

Type	1930	1935	1940	1945	1950	1955	1960	1965	1975	1985	1995	2000	Present
AF													
A													
MB													
JF													

Replacement Capabilities

Manual Autostarter Kits

Frame Size	Required	Start Contacts	Required	Run Contacts	Required	Grid Stack Kit
$2-3$	1	38A7018G12	1	38A7018G13	1	3354D90G10
$4-5,5 \mathrm{~L}$	1	550D409G18	1	550D409G19	1	3354D90G10
$5 \mathrm{M}-5 \mathrm{MM}$	1	3354D90G08	1	3354D90G09	2	3354D90G10

Solenoid Assembly with Coil (All Sizes)

Volt	$\mathbf{H z}$	Style ${ }^{(2)}$
115	60	$\mathbf{5 2 6 4 C 0 5 H 0 1}$
230	60	$\mathbf{5 2 6 4 C 0 5 H 0 2}$
460	60	$\mathbf{5 2 6 4 C 0 5 H 0 3}$
575	60	$\mathbf{5 2 6 4 C 0 5 H 0 4}$

Technology Upgrades

ECN42-ECN44 reduced voltage auto-transformer starter or IT. solid-state reduced voltage starter.

Notes

(1) When replacing solenoid assembly series $\mathbf{4 1 6 C 1 6 0}$, use adapter plate style $\mathbf{9 9 1 7} \mathbf{D 0 2 H 0 1}$-quantity one required.
(2) These styles replace coil style 296B892G_ . When ordering new style as replacement, customer must order adapter plate 9917D02H01— quantity one required.

Motor Control

ME and MD
DC Contactors
Originally a Westinghouse Product

Single-Pole, Cat. No. MD510 with L-64 Auxiliary Contact

Product Description

The Cutler-Hammer ME and MD line of DC contactors were and are designed to control functions of a connected motor by starting, stopping, reversing and regulating. Motor protection is provided when the contactors are combined with an appropriate protective device such as an overcurrent relay.

Application Description

Typical applications for the contactor functions are as variable voltage controller disconnects, fans, pumps, conveyors, rolling mills, cranes, or anywhere a DC motor is used.

Product History

The Cutler-Hammer ME and MD line of DC contactors dates back to the early 1940s in East Pittsburgh, PA, where the development of the M contactors was begun by the Westinghouse Electric Corporation to be used in steel rolling mills and nicknamed "mill duty" devices. Added frame sizes were developed to complete the line in Buffalo in the late

1940s. These devices were primarily mounted on insulating plates and were rear connected for ease of wiring the motor current conductors. In the 1960s, front-mounted MD versions of the devices were developed to mount devices on steel panels because the insulating panels were expensive and difficult to manufacture.

In the late 1970s, rearconnected devices were rare and the ME contactor line was created for front connection, with a rear connection kit available and the M rear connected version discontinued. The MR normally closed line was also introduced as a standard at that time.

Product History Time Line for M Series DC Contactors

Replacement Capabilities

ME Series Renewal Parts-Kits

	1NO Pole		2NO Poles		1NC Pole		1NO/NC Pole	
Description	Oty.	Part Number	0ty.	Part Number	Oty.	Part Number	Oty.	Part Number
Contact kit	1	2184A10G14	2	2184A10G14	1	2184A10G14	2	2184A10G14
Arc box 10/25/50A	1	2184A10G09	2	2184A10G09	1	2184A10G09	2	2184A10G09
Arc box 100/150A	1	2184A10G10	2	2184A10G10	1	2184A10G10	2	2184A10G10
Shunt kit	1	2184A10G21	1	2184A20G16	1	2084A01G07	1	2184A11G07
Armature kit	1	2184A10G19	1	2184A20G15	1	2084A01G06	1	2184A11G06
Blowout assembly								
10A	1	2184A10G15	1	2184A20G11	1	2184A10G15	2	2184A10G15
25A	1	2184A10G16	1	2184A20G12	1	2184A10G16	2	2184A10G16
50A	1	2184A10G17	1	2184A20G13	1	2184A10G17	2	2184A10G17
110/150A	1	2184A10G18	1	2184A20G14	1	2184A10G18	2	2184A10G18
Rear connection kit	1	2184A10G08	1	2184A10G08	1	2184A10G08	1	2184A10G08

ME Series Renewal Parts-Coils

	Part Number Operating Coils	Holding Coils	Contactors Only
Voltage	10/25/50/100/150 Ampere Sizes	$\begin{aligned} & \text { 10/25/50 } \\ & \text { Ampere Sizes } \end{aligned}$	100/150 Ampere Sizes
65	30B4376G06	44A6366G10	30B4376G27
90/92	30B4376G25	44A6366G12	427C048G16
115	30B4376G07	44A6366G13	30B4376G01
125	30B4376G08	44A6366G19	30B4376G26
230/240	30B4376G09	44A6366G15	30B4376G02
250	30B4376G10	44A6366G23	30B4376G17
500	30B4376G14	N/A	N/A
550	30B4376G11	44A6366G18	30B4376G03

Note
(1) If lower coils are required, order separately.

MR and MD Series © Sizes 5-9 Renewal Parts - Kits

Type MR and MD	Part Number Current
Contact Kit	
501/501R	26D2610G22
510	26D2610G15
601/701	26D2610G24
610/710	26D2610G16
810	26D2610G18
810R	26D2610G19
910	26D2610G20
Shunt	
501/501R	25A1650G02
510	25A1641G02
601	25A1666G03
610	25A1654G03
701	25A1666G04
710	25A1654G04
810/810R	25A1693G02
910	45A1425G02
Arc Box	
501/510	25A1646G01
601/610, 701/710	25A1662G01
810/910	25A1677G05
Armature Kit	
501/501R	25A1649G05
510	25A1640G05
601/701	25A1667G03
610/710	25A1655G04
810/810R	25A1694G05
910	38A2269G02
Blowout Coil Assembly Kit ${ }^{2}$	
M501/510	25A1644G05
M601/610	25A1659G05
M701/710	25A1660G03
M810/810R	25A1698G03
M910	238A2273G02
Blowout Coil Assembly Kit ${ }^{(3)}$	
M501/510	857D505G05
M601/610	857D506G08
M701/710	857D516G05
M810	857D508G07
M910	857D509G04

Notes
(1) $\mathrm{MR}=$ rear connected; $\mathrm{MD}=$ front connected.
(2) Type MR only
(3) Type MD only.

M and MD Series Sizes 5-9-Coils

Voltage	M and MD 501		M and MD 510		M and MD 610/710	
	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring
65	N/A	-	45A5515G11	-	-	-
90/92	N/A	-	45A5515G23	-	30B4377G17	-
115	30B4375G04	-	45A5515G01	-	30B4377G04	-
125	30B4375G24	-	45A5515G07	-	30B4377G10	-
230	30B4375G05	-	45A5515G04	-	30B4377G05	-
250	30B4375G12	-	45A5515G12	-	30B4377G07	-
550	30B4375G06	-	45A5515G05	-	30B4377G08	-
	M and MD 60		M and MD 810		M and MD 910	
Voltage	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring
92	-	-	435A928G01	(1)	435A930G01	(1)
115	30B4377G23	(1)	435A929G01	(1)	L483507G01	(1)
115	30B4377G01	(2)	L482211G01	(2)	L483507G01	(2)
125	30B4377G24	(1)	435A966G01	(1)	435A967G01	(1)
125	30B4377G13	(2)	-	-	-	-
230	30B4377G01	(1)	L482211G01	(1)	L483507G01	(1)
230	30B4377G02	(2)	-	-	-	-
250	30B4377G13	(1)	334P064G01	(1)	LR549720G01	(2)
250	30B4377G08	(2)	-	-	-	-
550	30B4377G25	(1)	L482213G01	(2)	L483508G01	(2)
550	30B4377G03	(2)	-	-	-	-
600	-	-	N/A	-	L548879G01	(1)

Voltage	M and MD 810R					
	Coil		Resistor		Resistor Mounting	
	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring	Part Number	Symmetrical Wiring
115	N/A	-	N/A	-	N/A	-
230	L482211G0	(1)	57D1336G10	(3)	57D1340G02	-
550	N/A	(1)	57D1336G12	(4)	57D1340G02	-

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 4.

Notes

(1) Two coils connected in series.
(2) Two coils connected in parallel.
(3) Two resistors connected in parallel.
(4) Resistors connected in series.

C80 Mill Type DC Contactors
Originally a Cutler-Hammer Product

Size 2-Two-Pole Contactor

NO Contactor

Product Description

These DC mill type contactors are designed for heavy industry service and are suitable for use on moving machinery. The contactors listed in this section are for surface mounting on steel panels and front-of-panel wiring. The power stud assembly is
mounted on the side of the contactor, rather than as part of a separate mounting kit.

The contactors feature forged steel armature levers and magnet frames for superior physical strength. Selflubricating bearings eliminate the need for lubricating the contactor.

New hot-molded arc chute assemblies contain no asbestos and have better arc extinction characteristics for Ionger contact life. The short stroke armature results in a mechanical life of more than 20 million operations.

Product History Time Line for C80 Mill Type DC Contactors

Size	1980	1985	1990	1995	2000	Present
Sizes 2-8						

Note: The C80 contactors were renumbered in 1984 from the old 6002 Series, which date back to 1919. Consult factory for old 6002 Series replacements and parts.

Contactors, Starters and Brakes

Replacement Capabilities

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006EE, Tab 4.

Notes

(1) Series resistor used with coil for voltage shown.
(2) Magnet closing coil only. If holdout coil is required, give number stamped on coil or advise Bulletin or Serial Number of controller.

511 AC and DC Brakes

Originally a Cutler-Hammer Product

Product Description

Cutler-Hammer Type S brakes are field-proven AC/ DC brakes. For applications up to $1800 \mathrm{rpm} / 50 \mathrm{hp}$. Precision holding and stopping in 4, 5.5, 7 and 10 -inch wheel sizes. With 15 standard bore sizes-straight or tapered, non-asbestos linings and off-the-shelf availability, electrically released and spring applied, providing "fail-safe" operation.

The retarding torque developed is directly proportional to the spring pressure.

Typical applications include conveyors, machine tools, printing presses, small cranes, overhead doors, dumb waiters, vacuum molding machines and carnival rides.

Product History Time Line for 511 AC and DC Brakes

Replacement Capabilities

Renewal Parts for Cat. No. 511 Shoe Brakes (1)

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 2.
(1) Parts listed are for current line of 511 brakes.
(2) Kit contains two linings and rivets for one brake.
(3) Part number covers one shoe only.

DPM-Contactor

DPM 1000 Vdc Contactor

Product Description

The Cutler-Hammer DPM 1000 Vdc Definite Purpose Contactor has been designed to meet severe environmental and vibration conditions found in your worst applications. The contactor is of unit construction, assembled on a molded insulated base, providing maximum performance in minimum space.

Product History Time Line for DPM-Contactor

Replacement Capabilities

DPM-Contactor Renewal Parts

Description	Catalog Number
Contact kit	2131A94G10
Arc box	2131A94G03
Shunt	3534C86G01
Coils	
28 Vdc	2114A92G04
36 Vdc	2114A92G05
55 Vdc	2114A92G06
74 Vdc	2114A92G09
$110 / 115 \mathrm{Vdc}$	2114A92G14
125 Vdc	2114A992G15
275 Vdc	2114A92G20
600 Vdc	

Technology Upgrades

This product currently listed in Volume 5-Motor Control and
Protection, CA08100006E, Tab 4.

AVD-Contactor

Product Description
The AVD-Contactor is a single-pole normally open, load break, bi-directional definite purpose DC contactor. The device is rated at 1400A continuous and is capable of switching up to 2000 Vdc loads.

Operating Coil
Characteristics

13
\(\left.$$
\begin{array}{lll}\begin{array}{l}\text { Coil } \\
\text { Voltage }\end{array} & \begin{array}{l}\text { Current Draw at } \\
\text { Nominal Voltage } \\
(\pm 5 \% \text { at 20}\end{array}\end{array}
$$ \begin{array}{l}Catalog

Number\end{array}\right]\)| 28 | 1.87 | $\mathbf{9 - 3 0 0 4 - 2}$ |
| :--- | :--- | :--- |
| 37 | 1.58 | $\mathbf{9 - 3 0 0 4 - 3}$ |
| 74 | 0.79 | $\mathbf{9 - 3 0 0 4 - 1}$ |
| 100 | 0.62 | $\mathbf{9 - 3 0 0 4 - 5}$ |
| 230 | 0.25 | $\mathbf{9 - 3 0 0 4 - 4}$ |

Product History

The Cutler-Hammer AVD (Advanced DC Contactor) was released for sale in 1995. The device has not gone through any significant redesigns since its introduction.
Product History Time Line for AVD-Contactor

Device	1993	1995	2000	Present
AVD-Contactor				

Replacement Capabilities

Replacement Coils

Coil Voltage (Vdc)	Catalog Number
28	9-3004-2
37	9-3004-3
74	$9-3004-1$
100	$9-3004-5$
230	$\mathbf{9 - 3 0 0 4 - 4}$

Auxiliary Contacts

Contact Configuration	Terminal Configuration	Catalog Number
1NO/1NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 5}$
2NO	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 6}$
2NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 7}$
1NO/1NC	Screw type	$\mathbf{1 0 - 6 8 1 7}$
2NO	Screw type	$\mathbf{1 0 - 6 8 1 7 - 2}$
2NC	Screw type	$\mathbf{1 0 - 6 8 1 7 - 3}$

Replacement Contacts and Arc Chute

	Quantity Required per Contactor	Catalog Number
Description	1	$\mathbf{2 3 - 7 2 5 3}$
Stationary contact	2	$\mathbf{2 3 - 7 2 5 5}$
Movable contact	1	$\mathbf{6 2 - 1 0 3 8}$
Arc chute		

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 4.

Motor Control

D-Contactor

750 Vdc Contactor

Product Description

The D-Contactor is a singlepole normally open, load break, bi-directional definite purpose DC contactor. Two devices are available rated at 1800 and 3000A at 750 Vdc .

Operating Coil
Characteristics

Coil Voltage	Current Draw at Nominal Voltage $\left(\pm 7.5 \%\right.$ at $20^{\circ} \mathrm{C}$)	Catalog Number
12	3.96	9-1688-15
24	2.00	9-1688-7
32	1.44	9-1688-9
48	1.00	9-1688-12
74	. 97	9-2064-3
100	. 45	9-1688-8
115	. 37	9-1688-2
230	. 20	9-1688-1

Product History

The Cutler-Hammer
D-Contactor was released for sale in early 1970s. The original device included a permanent magnet blowout coil and square main contacts. The permanent magnet blowout coil device was uni-directional or the current could only flow through the device in one direction. As such, it was essential that the polarity as marked on the power terminals be maintained. The permanent magnet blowout device is no longer offered.

Product History Time Line for D-Contactor

Device	1970	1980	1990	2000	Present
Permanant Magnet Blowout Device					
Blowout Coil Device					

Replacement Capabilities
Replacement Coils

Coil Voltage (Vdc)	Catalog Number
12	$\mathbf{9 - 1 6 8 8 - 1 5}$
24	$\mathbf{9 - 1 6 8 8 - 7}$
32	$\mathbf{9 - 1 6 8 8 - 9}$
48	$\mathbf{9 - 1 6 8 8 - 1 2}$
74	$\mathbf{9 - 2 0 6 4 - 3}$
100	$\mathbf{9 - 1 6 8 8 - 8}$
115	$\mathbf{9 - 1 6 8 8 - 2}$
230	$\mathbf{9 - 1 6 8 8 - 1}$

Auxiliary Contacts

Contact Configuration	Terminal Configuration	Catalog Number
1NO/1NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 5}$
2NO	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 6}$
2NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 7}$
1NO/1NC	Screw type	$\mathbf{1 0 - 6 8 1 7}$
2NO	Screw type	$\mathbf{1 0 - 6 8 1 7 - 2}$
2NC	Screw type	$\mathbf{1 0 - 6 8 1 7 - \mathbf { 3 }}$

permanent magnet blowout device. In addition, the present contact kits with the round contacts can be used on the original devices that employed the square main contacts. Subsequent minor product enhancements have been made with the new parts being a direct replacement for the parts that they replaced.

Replacement Contacts, Blowout Coil and Arc Chute

Device Rating Amperes	Main Contact Configuration	Contacts	Catalog Number
1800	Two-main	Main contacts	$\mathbf{6 - 4 9 7}$
1800	Two-main	Arcing contacts	$\mathbf{2 3 - 5 4 4 9}$
3000	Four-main	Main contacts	$\mathbf{6 - 4 9 6}$
3000	Four-main	Arcing contacts	$\mathbf{2 3 - 5 4 4 8}$
1800 and 3000	Two- and four-main	Blowout coil	$\mathbf{9 - 2 5 9 2}$
1800 and 3000	Two- and four-main	Arc chute	$\mathbf{6 2 - 8 2 2}$

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 4.

Reversing/Assignment Contactors

1000 Vdc Contactor

Product Description

The Reversing/Assignment Contactor is a double-pole, double-throw, non-load break definite purpose DC contactor. A three-position center-off and a two-position magnetically-latched configuration is available. The device is rated for 1100A, 1000 Vdc. The Reversing Contactor includes cross-over busbars for DC motor reversing applications; the Assignment Contactor omits the cross-over busbars for motor assignment applications.

Operating Coil Characteristics Current Draw at		
Coil Vominal Voltage No $\mathbf{7 . 5 \%}$ at 20		
24	1.60	Catalog Number
28	1.30	$\mathbf{9 - 1 9 0 3 - 9}$
36	1.06	$\mathbf{9 - 1 9 0 3 - 1}$
74	0.49	$\mathbf{9 - 1 9 0 3 - 3}$
110	0.33	$\mathbf{9 - 1 9 0 3 - 7}$
125	0.33	$\mathbf{9 - 1 9 0 3 - 6}$
250	0.17	$\mathbf{9 - 1 9 0 3 - 4}$

Product History

The Cutler-Hammer Reversing/Assignment Contactor was released for sale in the early 1970s. The original device incorporated a leaf spring contact assembly and square contacts. The device was redesigned in the
early 1980s to incorporate a coil spring contact assembly with round contacts. The present device is a form, fit, function replacement for the original device. In addition, the original leaf spring contact assembly devices can be
upgraded to the new coil spring contact assembly with the one-time purchase of a contact upgrade kit. The standard contact kit can then be used for subsequent contact replacements.

Product History Time Line for Reversing/Assignment Contactors

Device	1970	1980	1990	2000	Present
Leaf Spring Contact Assembly Device Coil Spring Contact Assembly Device					

Replacement Capabilities

Replacement Coils		Auxiliary Contacts		
Coil Voltage (Vdc)	Catalog Number	Contact Configuration	Terminal Configuration	Catalog Number
24	9-1903-9	1N0/1NC	Fast-on	10-3519-5
28	9-1903-1	2NO	Fast-on	10-3519-6
36	9-1903-3	2NC	Fast-on	10-3519-7
74	9-1903-7	1NO/1NC	Screw type	10-6817
110	9-1903-6	2 NO	Screw type	10-6817-2
125	9-1903-4	2NC	Screw type	10-6817-3

Replacement Contacts

Device	Configuration	Catalog Number
Reversing/assignment	Three-position	$\mathbf{6 - 6 0 2}$
Reversing/assignment upgrade kit ${ }^{(1)}$	Three-position	$\mathbf{6 - 6 0 2 - 3}$
Magnetic latched reversing/assignment	Two-position	$\mathbf{6 - 6 0 2 - 5}$

Technology Upgrades

This product currently listed in Volume 5-Motor Control and Protection, CA08100006E, Tab 4.

Note

(1) The 6-602-3 contact kit will upgrade the three-position, reversing/assignment device from the original design that incorporated a leaf spring contact structure to the present design that incorporates a coil spring contact structure. The 6-602 contact kit can then be used after the device has been upgraded for the subsequent contact replacement.

Motor Control

P- and S-Contactors

Power Contactor

Product Description

The P- and S-Contactors are single-pole normally open, load break DC contactors. Although the devices have two arc shields, they are functionally single-pole devices. The contactors typically carried a 1000 Vdc , 1000A rating and were applied in locomotive, rapid transit and high horsepower DC drive applications.

Product History

The Cutler-Hammer P-Contactor and S-Contactor were released for sale in the 1960s. These were singlepole DC contactors that used two arc chutes.

They typically carried a $1000 \mathrm{Vdc}, 1200 \mathrm{~A}$ rating and were discontinued in the mid 1980s. A few renewal parts are still available.

Product History Time Line for P- and S-Contactors

Device	1960	1970	1980	2000	Present
P- \& S-Contactors					

Replacement Capabilities

A few renewal parts are still available.
Auxiliary Contacts

Contact Configuration	Terminal Configuration	Catalog Number
1NO/1NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 5}$
2NO	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 6}$
2NC	Fast-on	$\mathbf{1 0 - 3 5 1 9 - 7}$
1NO/1NC	Screw type	$\mathbf{1 0 - 6 8 1 7}$
2NO	Screw type	$\mathbf{1 0 - 6 8 1 7 - 2}$
2NC	Screw type	$\mathbf{1 0 - 6 8 1 7 - 3}$

Replacement Contacts, Blowout Coil and Arc Chute

	Quantity Required per Contactor	Catalog Number
Description	1	$\mathbf{6 - 3 3 2}$
Contact kit	2	$\mathbf{6 2 - 4 6 9}$
Arc chute	2	$\mathbf{6 2 - 5 3 2}$
Blowout coil		

Technology Upgrades

This product can potentially be replaced with the DPM-Contactor or D-Contactor depending on the application. Please contact our Technical Resource Center for replacement device selection.
Further Information

Publication Number	Description
PT03304001E	Genuine Cutler-Hammer Replacement Contact Kits and Coils Wall Chart
B8F01SE	Vacuum Starters and Contactors
CA08100006E	Volume 5-Motor Control and Protection

For further replacement parts information, contact Standard Open Control Aftermarket at 1-800-535-8992.

Pricing Information

Price and Availability Digest (PAD)
Vista/VISTALINE Discount Symbols 1CD-5C, 1CD-1C, 15CD3 and 1CD-1

Contents

Description

Low Voltage Soft Starter
Product Description,
Product History,
Product History
Time Line.
V12-T13-70
Replacement
Capabilities,
Technology
Upgrades .
V12-T13-71
Low Voltage Adjustable
Frequency AC Drives
Product Description,
Product History
Time Line.
V12-T13-72
Replacement
Capabilities,
Technology
Upgrades .
V12-T13-74
Soft Starters

13

Product Description

Soft starters serve to provide reduced voltage starting, protection and control for standard three-phase induction motors. They are commonly found in applications like conveyors, compressors, extruders, pumps and blowers, etc.

Reduced voltage starting is beneficial because current and torque are reduced during the motor starting process. This reduces the electrical and mechanical shock experienced during motor starting, prolonging motor and equipment life. Soft starters also provide for maximum efficiency of the motor duty cycle by electronically sensing the motor load and reducing the voltage applied to the motor when it is running at less than full load torque.

Soft starters also provide short circuit and various types of electronic protective functions. Common features include phase loss, undervoltage, current balance, phase rotation, current limit, overtemperature, etc.
Soft start controllers are similar to reduced voltage motor starters, except they include no overload or shortcircuit protection. Soft start controllers are applied in series with conventional electromechanical starters to provide the benefits of reduced voltage starting at lower cost. Electromechanical starter contact life is also improved by the soft start controller.

Product History

Eaton's present line of Cutler-Hammer soft starters is the culmination of 38 years of product development. In 1958, Vectrol Engineering began manufacturing SCR Gate Driver circuitry and progressed into their own soft starter product line, known as the Vectrol Motor Starter (VMS). In 1980, Vectrol was purchased by Westinghouse. The VMS was quickly phased out of production and the Vectrol ES (Energy Saver) solid-state reduced voltage starter was introduced. The Vectrol ES combined features of automatic power factor adjustment and reduced voltage, maximizing the efficiency of the motor duty cycle. The Vectrol ES starter was actively manufactured until 1988 when the EasyStart Motor Starter was introduced.

Eaton entered the market in 1975 with the A415, A445 and A485 product lines. By 1983, Eaton had released the A515/A545 Model A solidstate reduced voltage starter and followed up in late 1984 with the improved Model B A515. This starter used a solid-state controller, an overload relay and a six SCR full-wave power section. In 1988, Westinghouse introduced its Easy-Start and Easy-Start Jr. product lines that also used a solid-state control circuit and a six SCR full-wave power section. In 1995, the newly formed SolidState Motor Control Division (SSMC) of the new Eaton released the Easy-Start EA Reduced Voltage Starter, combining the voltage control of SCRs with the durability of the Advantage motor starter into a uniquely small package.

The EA, EJ and the ES product lines have been replaced by the S801+ and S811+ line of soft starters. Introduced in October of 1999, the S801+ and S811+ soft starter is compact, easy to install, easy to program and is the most advanced soft starter available anywhere.

Product History Time Line

Product	1975	1980		1985	1990		1995	2000	Present
Cutler-Hammer A415/A445/A485 Westinghouse Vectrol VMS Westinghouse Vectrol Energy Saver Westinghouse Vectrol Startrol									
Westinghouse Vectrol Startrol Power Miser Cutler-Hammer A515/A545 Model A Westinghouse Power Miser 2 Cutler-Hammer A515/A545 Model B									
Westinghouse Easy-Start Westinghouse Easy-Start 120 Cutler-Hammer Easy-Start ES									
Westinghouse Power Miser 2, Model 3									
$\left.\begin{array}{l}\left.\begin{array}{l}\text { Cutler-Hammer C514 } \\ \text { Cutler-Hammer Easy-Start EC }\end{array}\right\}, ~ f r l\end{array}\right\}$									
Westinghouse Easy-Start Jr. Westinghouse Easy-Start 100 Cutler-Hammer Easy-Start EJ									
Cutler-Hammer Easy-Start EA Cutler-Hammer S801+/S811+ Soft Starter									

Replacement Capabilities

In most cases, recommended

Cutler-Hammer S811+ Saft Starter. Eaton's Electrical Services \& Systems (EESS) has trained technicians nationwide. See Tab 22 in this catalog for further information about EESS capabilities.
controls the inverter and ultimately the magnitude and frequency of the output voltage to the motor. Input to the solid-state logic can be manual (from an operator type keypad) or automatic (from design features programmed into the drive logic).

The advent of microprocessorbased logic and the advancements of solid-state power technology have dramatically reduced the costs of AFCs and enhanced
their product features. This has permitted a more economical solution for adjustable speed motor applications because AFCs permit the use of standard squirrel cage induction motors instead of DC motors, which are more expensive and harder to maintain. AFCs are ideal for variable torque applications like centrifugal

Typical Adjustable Frequency Controller pumps and fans, and constant torque applications like conveyers and extruders.

Block Diagram

Adjustable Frequency AC Drives

Product Description

Cutler-Hammer Adjustable Frequency Controllers (AFCs) serve to provide adjustable speed and control for standard AC induction motors. AFCs rectify the incoming AC line voltage to supply a fixed potential DC bus. An inverter section is employed to invert the DC bus voltage to an adjustable frequency output voltage.
The solid-state logic section

Product History Time Line

Adjustable Frequency AC Drives—Solid-State Low Voltage

General Information

Model	hp Range	Input Voltage	Output Devices	Output Algorithm	Control Type
VLT-5	1-5	240,415	SCR	VVI	Analog
AF-1000	1-5 (1)	230,480	Transistors	PWM	Analog
AF-1500	1-30	240,480	Transistors	PWM	Digital
AF-1600	1-20	240,480	IGBT	Vector PWM	Digital
AF-2000	5-10	230	SCR	VVI	Analog
AF-300	N/A	N/A	SCR	CSI	Analog
AF-3000 (2)	30-250	230, (460 opt)	SCR	PWM	Analog
AF-5000	5-100	380-480	Transistor	PWM	Analog
AF-5000+	5-600	380-480	Transistor	PWM	Digital
AF-6000	15-300	480	SCR	VVI	Analog
AF-7000	20-600	480, 575	Transistor	VVI	Analog
AF-8000	3 and 5	480	SCR	PWM	Analog
Accutrol 100	1-5	230	Transistor	PWM	Analog
Accutrol 110	1-75	230, 460	Transistor	PWM	Digital ${ }^{(3)}$
Accutrol 150	3-50	460	Transistor (4)	PWM	Analog
Accutrol 200	3-250	460	Transistor ${ }^{(4)}$	PWM	Analog
Accutrol 300	15-600	460,575	Gate turn-off thyristor	VVI	Analog
Accutrol 400	3-150	460	Transistor	PWM	Digital
Accutrol 700	100-600	480	IGBT	Vector PWM	Digital
AF93	2-20	240, 480	Insulated gate bipolar transistor	Vector PWM	Digital
AF95	15-200	480	Insulated gate bipolar transistor	PWM	Digital
AF97	100-600	480	Insulated gate bipolar transistor	Vector PWM	Digital
AF91	Fractional to 10	240,460	Insulated gate bipolar transistor	PWM	Digital
MVX9000	Fractional to 10	120, 240, 480	Insulated gate bipolar transistor	PWM	Digital
9000 Series	Fractional to 1100	208-575	Insulated gate bipolar transistor	PWM	Digital
SVX9000	Fractional to 2000	208-575	Insulated gate bipolar transistor	PWM	Digital

Notes

(1) Also available with a single-phase output.
(2) Standard 220 V output only.
(3) Analog controls on pre-1988 models.
${ }^{(4)}$ Gate Turn-off Thyristor (GTO) output devices on pre-1986 models. Transistor versions have a T as the third character in the style number.

Replacement Capabilities

	Replacement Capabilities	
	Model	Recommended Replacement
	Dynamatic Adjustable Frequency Drives	
	VLT-5	MVX9000
	AF-1000	MVX9000
	AF-1500 (1)	MVX9000
	AF-1600	MVX9000
	AF-2000	MVX9000
	AF-300 (Responder)	SV/HV/CP9000
	AF-3000	SV/HV/CP9000
	AF-5000	SV/HV/CP9000
	AF-5000+ / IS-5000+	SV/HV/CP9000
	AF-6000	SV/HV/CP9000
	AF-7000 / IS-7000	SV/HV/CP9000
	AF-8000	AF91SV
	Westinghouse Adjustable Frequency Drives	
	Accutrol 100	MVX9000
	Accutrol 110/Accuflow Jr. (1)	MVX9000
	Accutrol 150	SVX/HVX/CPX9000
	Accutrol 200/Accuflow	SVX/HVX/CPX9000
	Accutrol 300	SVX/HVX/CPX9000
	Accutrol 400	SVX/HVX/CPX9000
	Accutrol 700	SVX/HVX/CPX9000
	Cutler-Hammer Drives	
13	AF91	MVX9000
	AV91	MVX9000
	AF93	SVX/HVX/CPX9000
	AF95	SVX/HVX/CPX9000
	AF97	SVX/HVX/CPX9000
	SV9000	SVX9000
	HV9000	HVX9000
	CP9000	CPX9000

Eaton's Electrical Services \& Systems (EESS) has trained technicians nationwide. See
Tab 22 in this catalog for further information about EESS capabilities.

Technology Upgrades

The SVX9000 improves upon the SV9000 with modular construction and greater program capability. Clean power, 18-pulse
configurations are available to meet IEEE-519 requirements for electro-magnetic compliance. The HVX9000 provides a simpler parameter set geared toward the HVAC industry, and the HVX Intellipass provides automatic bypass with 24 Vdc control. Additionally, the MVX9000 gives customers a compact, low-cost alternative to the full-featured drives of 10 hp or less. The same general controls are available, with the exception of closed-loop (encoder) control. The MVX9000 boasts a PLC-like control in the form of a step sequence program for repeated process applications. These units combine digital microprocessor control, a user-friendly keypad, IGBT technology, and a Windows ${ }^{\text {® }}$ based programmer to provide an adjustable frequency drive that can be customized to almost any application.

Note
(1) The AF-1500, Accutrol 110 and Accuflow Jr. are identical units.

Support Chart for Non-Current Vintage Products

(See below for topic definitions)						
Model	РСВ Repair	Upgrade Kits	Factory Repair	Field Service	Technical Support	Spare Parts
Dynamatic Adjustable Frequency Drives						
VLT-5						
AF-1000						
AF-1500 (1)	\square		\square	\square	\square	\square
AF-1600	\square		\square	\square	\square	\square
AF-2000						
AF-300 (Responder)						
AF-3000						
AF-5000	■		■	■	■	■
AF-5000+ / IS-5000+	■		\square	\square	\square	\square
AF-6000						
AF-7000 / IS-7000	■		■	■	■	■
AF-8000						
Westinghouse Adjustable Frequency Drives						
Accutrol 100						
Accutrol 110/Accuflow Jr. (1)	\square		\square	\square	\square	\square
Accutrol 150	■	(${ }^{2}$	■	■	\square	■
Accutrol 200/Accuflow	■	$\square{ }^{(2)}$	■	■	■	\square
Accutrol 300	\square		\square	\square	\square	[${ }^{3}$
Accutrol 400	\square		■	■	\square	\square
Accutrol 700	\square	\square	\square	\square	\square	\square
Cutler-Hammer Drives						
AF93						
AF95	■	■	■	■	■	■
AF97	\square	\square	\square	\square	\square	\square

Advanced Technology Services, 8200 N. University, Peoria, IL 61615, now provides support for these products.
Their toll-free number is $\mathbf{1 - 8 7 7 - 6 4 5 - 3 6 0 6}$.

Definitions

PCB Repair

Printed circuit boards may be returned to Advanced Technology Services for repair. All PCBs are upgraded to the most current revision at the time of the repair.

Upgrade Kits

Kits are available to upgrade the basic performance of certain vintage products. Contact Advanced Technology Services for more information.

Service Depot Repairs

Entire assemblies may be returned to Advanced Technology Services for repair, upgrade or refurbishment.

Field Service

Eaton's Electrical Services \& Systems (EESS) has trained technicians nationwide. See Tab 22 in this catalog for further information about EESS capabilities.

Technical Support

The trained technicians at Advanced Technology Services are available to provide assistance over the telephone.

Spare Parts

Advanced Technology
Services maintains a complete inventory of spare parts.

Product Support Services

For all Product Support
Services for these "legacy" products, contact Advanced Technology Services at 1-877-645-3606. For technical support with Eaton's current line of variable frequency drives, contact the
Drives Technical Resource
Center at 1-800-322-4986

Notes

(1) The AF-1500, Accutrol 110 and Accuflow Jr. are identical units.
(2) No upgrades are available for Gate Turnoff Thyristor (GTO) versions. Transistor versions are identified by a leading "A1T" or "A2T" in the model number.
(3) GTOs are not available as spare parts for models below 100 hp .

Solid-State—Mark V

The Mark V is 100% solidstate and features a "soft-turn-on" circuit that applies DC field voltage to the motor field. It enables all required functions for correct synchronization to be accomplished without the use of moving contacts or mechanical closing devices.
With the Mark V, the static exciter power supply is always supplied and is part of the "system."

Also available as a modification with the Mark V is a VAR or power factor, DC field current regulator. The regulator consists of a printed circuit board, auxiliary devices and potentiometers for adjustment.

Product History
 Originally a Westinghouse Product

Synchronous Motor Control

Brush type synchronous field control was originally available in the 1940s. Motor starters for brushless synchronous motors have been offered since the late 1960s. Synchronous motors can be medium voltage
(2300-7200V) or low voltage (600 V and below). A synchronous motor starter includes the basic motor control PLUS the synchronous control and protection functions.
Typically, the basic motor control and the field application control are mounted in separate compartments within the starter. Ratings of synchronous control are in terms of the maximum DC field amperes required by the motor. Current ratings are 45, 90, 135, 160, 200 or 270A DC, through 6000 hp at 5 kV .

Relay and Solid-State Type Control

Relay type Slipsyn was introduced in 1947 and uses the ASR synchronizing relay. Forms of solid-state type Slipsyn were introduced in the late 1950s and early 1960s, but were not completely solid-state and had some of the operation problems that the relay type control encountered. These were called Mark I and Mark II Static Slipsyn. In 1989, the Mark V Solid-State Slipsyn field control was introduced.

Medium Voltage (AMPGARD ${ }^{\circledR}$) Starters

The AMI AMPGARD synchronous starter (19571970) used a 60-inch deep enclosure with the synchronous control in the low voltage section in the front bottom two thirds of the starter enclosure. The basic motor control was located in the rear bottom two thirds of the enclosure, barriered off from the low voltage section. The AMI AMPGARD for synchronous motors used the ASR relay type control.
The LF AMPGARD (19621988) primarily used the ASR field application relay control. Mark I and Mark II Static Slipsyn were also used during their availability periods. The LF AMPGARD for synchronous motors included the basic induction motor control (ISO® switch, contactor and starter control) in the bottom half of the structure.

The upper half contained the step-down static excitation transformer with current limiting fuses, the Silicon Controlled Rectifier (SCR) type static exciter and the synchronizing control and motor field protection panel.

The SJ AMPGARD (19822000) family of synchronous control is very similar to the LF AMPGARD. Until the availability of the Mark V solidstate synchronous control, the SJ used the ASR relay type field control. With the advent of the Mark V, most of the synchronous starters are supplied with this type of control. In both ASR and Mark V control schemes, the synchronous gear is usually mounted in the top half of the starter.

The SL AMPGARD (2000present) is similar to the SJ AMPGARD but uses the Mark V solid-state synchronous controller, exclusively.

Low Voltage Synchronous

 StartersLow voltage synchronous starters are similar in nature to high voltage synchronous starters except in two regards. High voltage starters, unlike low voltage starters, must isolate the low voltage from the high voltage. The components for the field control are the same.
September of 1989. In 1991,
the product was reintroduced
using the Mark V solid-state
field control.

Product History Time Line

Relay Slipsyn Automatic Field Application Panel

Product Description

Relay Field Panel
Shaded area denotes obsolete or discontinued products and services.

Automatic Field Application Control

The field application panel provides Slipsyn automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device such as a circuit breaker or a linestarter. One interlock on the primary device is used to actuate the field application control. When the motor accelerates to proper speed for pull-in, the field is automatically applied.
The controller is available for floor mounting. Floormounted cabinets are NEMA 1 with hinged front door and removable rear plates.

Typical Schematic

Shaded area denotes obsolete or discontinued products and services.

The cabinets contain the following equipment:
1- Polarized slip frequency field application relay type ASR (FR) with halfwave rectifier (REC).
1- Time relay with contacts available for unloader circuit (2TR).
1- Pullout relay and transformer (PO).
1- Field contactor, two-pole (FC).
1- Damper winding protective relay (SC).
1-Starting and field discharge resistor when size permits; otherwise, provided for separate mounting) (1RES).
1-DC field ammeter, panel type, semi-flush mounted (DC AMM).
1-DC field ammeter shunt (SH).
1- DC field failure protection (FLA).
2- Auxiliary relays (2TRX), (2MX).
1- Incomplete sequence relay (IS).
Static Excitation Power
Supply Panel
Constant Potential Type
Power conversion AC to DC
units are designed for
individual synchronous
motor field excitation.
These units are convection
cooled, solid-state and are
completely assembled and
wired as a self-contained
package with a relay Slipsyn
automatic field application
control. The connections
necessary to the external
circuits are line leads, motor
leads, field connections and
control interconnection.
The static system consists
of a convection-cooled
silion rectifier three-phase
full-wave bridge assembly,
a set of current limiting
fuses in the secondary side
of the transformer and a set
of surge protecting devices.
The transformer has
secondary taps that are
adjustable with four course
taps that provide
approximately 12%
adjustment per tap, and
three fine taps that
provide 4% adjustment
per tap.

Static Excitation Power Supply Panel
 Constant Potential Type

Power conversion AC to DC units are designed for individual synchronous motor field excitation. These units are convection cooled, solid-state and are completely assembled and wired as a self-contained package with a relay Slipsyn automatic field application control. The connections necessary to the external circuits are line leads, motor leads, field connections and control interconnection.

The static system consists silicon rectifier three-phase full-wave bridge assembly, a set of current limiting fuses in the secondary side of the transformer and a set of surge protecting devices. The transformer has secondary taps that are adjustable with four course taps that provide approximately 12% three fine taps that per tap.

Adjustable Potential Type

An adjustable potential exciter is similar to the constant potential exciter except that it uses SCRs and the voltage adjustment is made with a potentiometer mounted on the door.

Technology Upgrades

For Brush-Type, Relay-Panel Slipsyn (Class 14-100) Upgrades
New synchronous field controllers using the latest solid-state technology are usually available. Upgrades for primary starter and contactor components may also be available.

Information Required from Customer for Upgrade Evaluation

1. Original assembly nameplate data including general order "GO" number as well as any drawing numbers.
2. Complete motor data including horsepower, phase, voltage/Hz, RPM, FLA, LRA, full-load DC amperes, power factor, excitation voltage, induced field amperes at 95% speed and at 0\% speed, recommended discharge resistor ohms and maximum time at zero speed (locked rotor).
3. Excitation control detail such as "constantpotential" or "adjustablepotential." Adjustablepotential usually requires a field rheostat (motor field-resistor).
4. Detail on the motor's function such as the application data and other service conditions such as duty-cycle, etc.

Slipsyn Automatic Field Application Panel with Static Exciter

Product Description

Mark V Field Controller
Automatic Field Application Control
The Slipsyn panel provides automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device, such as a circuit breaker or a linestarter. When the motor accelerates to proper speed for pull-in, the field is automatically applied.

The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection.
B. Incomplete sequence.
C. Failure to synchronize.
D. Fuse failure (Mark V).
E. Pullout protection.
F. DC current failure protection.
Also the application of the DC power to the motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn-on" circuit when applying DC voltage to the motor field.

Depending on the size of the solid-state application panel, the controller is available in a NEMA 1 floor-mounted enclosure or an AMPGARD type cell construction.

In both designs, a hinged front door with externally ventilated heat sinks will be provided.

The cabinets will contain the following equipment:
1 - Step-down exciter transformer-three-phase (TX).
3 - Primary fuses (3 PRI).
3 - Secondary fuses (3 SEC).
1 - "SCR" power supply panel.
1 - Synchronous control board (CB).
1 - DC ammeter-panel type (DC AMM).
3 - "MOV" for surge protection (MOV).
1 - Starting and field discharge resistor (when size permits; otherwise provided for separate mounting).
1 - Field failure relay (FLA).
1 - Incomplete SEO Timer (FLT).
1 - Start timer (SYTR).
1 - Potentiometer (P2).

Typical Schematic

Note
(1) Not supplied with Mark V.

Power Module, 200A, Three Required

Heat Sink

MOV

Snubber for Thyristor Stack

Main Synchronizing Control/ Protection Board

Note: Typical solid-state
components used in Mark V Slipsyn-Refer to RPD 8855S for renewal parts for synchronous control.

Field Panel with Static Exciter 20 kW Maximum - Approximate Dimensions in Inches

Open Cell Height	Width	Depth	Floor Mounted - NEMA 1 Height		
45	36	30	90	Width	Depth

Technology Upgrades

For Brush Type Mark V SolidState Slipsyn (Class 14-100) Upgrades

New synchronous field controllers using the latest solid-state technology are available. Replacements and upgrades for primary starter and contactor components are also available.

Information Required from Customer for Upgrade
 Evaluation

1. Original assembly nameplate data including general order "GO" number as well as any drawing numbers.
2. Complete motor data including horsepower, phase, voltage/Hz, RPM, FLA, LRA, full-load DC amperes, power factor, excitation voltage, induced field amperes at 95% speed and at 0% speed, recommended discharge resistor ohms and maximum time at zero speed (locked rotor).
3. Excitation control detail such as "constantpotential" or "adjustablepotential." Adjustablepotential usually requires a field rheostat (motor field-resistor).
4. Detail on the motor's function such as the application data and other service conditions such as duty-cycle, etc.

Synchronous-Brush

 Type Mark V Solid-State Slipsyn Class 14-200 LV Motor Starter

600V, NEMA Size 8,
Synchronous Starter

Product Description

Slipsyn magnetic starters provide reliable, automatic starting of synchronous motors. Automatic synchronization is provided by the Mark V Solid-State Field
Panel, which ensures application of the field at proper motor speed, and at a favorable angular position of stator and rotor poles. As a result, line disturbance resulting from synchronization is reduced and effective motor pull-in torque is increased.
Application of DC power to motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn on" circuit when applying DC voltage to the motor field.

The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection.
B. Incomplete sequence.
C. Failure to synchronize.
D. Fuse failure (Mark V).
E. Pullout protection.
F. DC current failure protection.

The cabinet will contain the following:
1 - Primary starter full voltage or reduced voltage.
1 - Ammeter shunt (when required).
1 - Auxiliary relay for main line contactor (when required) (MX).
1 - Starting and field discharge resistor (IRES).
1 - Current transformer for AC ammeter through NEMA Size 4; Sizes 5 and larger use three current transformers for overload relays and $A C$ ammeter.
1 - Set control circuit terminal blocks.
3 - Type AN manual reset thermal overload relay and three heater elements (OL).
1 - Step-down exciter transformer-three-phase (TX).
3 - Primary fuses (3 PRI).
3 - Secondary fuses (3 SEC).
1 - SCR power supply panel.
1 - Synchronous control board (CB).
3 - MOV for surge protection (MOV).
1 - Starting and field discharge resistor (when size permits; otherwise provided for separate mounting).
1 - AC ammeter, panel type (AM).
1 - DC ammeter, panel type (DC AMM).
1 - Exciter field potentiometer (P2).
1 - Field failure relay (FLA).
1 - Incomplete SEQ Timer (FLT).
1 - Start timer (SYTR).

Typical Schematic Full Voltage Starter, Class 14-200, Non-Combination Type

Technology Upgrades

For Brush-Type Mark V Solid-

 State Slipsyn (Class 14-200) Low Voltage Motor Starter UpgradesNew synchronous field controllers using the latest solid-state technology are usually available.
Replacements and upgrades for primary starter and contactor components are also usually available.

Information Required from Customer for Upgrade Evaluation

1. Original assembly nameplate data including General Order "GO" number as well as any drawing numbers.
2. Complete motor data including horsepower, phase, voltage/Hz, RPM, FLA, LRA, full-load DC amperes, power factor, excitation voltage, induced field amperes at 95% speed and at 0% speed, recommended discharge resistor ohms and maximum time at zero speed (locked rotor).
3. Excitation control detail such as "constantpotential" or "adjustablepotential." Adjustablepotential usually requires a field rheostat (motor field-resistor).
4. Detail on the motor's function such as the application data and other service conditions such as duty-cycle, etc.

Note

(1) Remote device.

Motor Control

Relay Slipsyn Automatic
Field Application Panel

Brushless Field Panel

Product Description

This field application panel provides DC power to the exciter field and is designed for use in conjunction with a primary line closing device such as a contactor motor starter or a circuit breaker motor starter. A normally open electrical interlock on the primary device is used to actuate the field application control. This panel utilizes electromechanical devices to apply DC power to the motor exciter field circuit.

Note: The power rectifiers for the motor field circuit and automatic synchronizer are mounted on the synchronous motor rotor.

Brushless Synchronous Control
The controller can be supplied with or without enclosure. Panel mounted or open cell are suitable for mounting within other larger enclosures.

The cabinet or open panel or open cell contains the following equipment:

1 - Solar transformer (1 CPT).
1 - Power factor relay (PO).
1 - Auto-transformer (AT) Powerstat.
1 - Damper winding protection relay (DP).
1 - Field contactor (FC).
1 - Volt trap (VT).
1 - Rectifier (REC).
1 - Sequence relay (TR).
1 - Damper winding protection hold-in relay (DPX)—if required.
2 - Fuses (SEC FU), (2 SEC FU).
1 - DC ammeter-panel type (DC AMM).

Typical Starter Schematic

Notes

(1) Starter devices not supplied with field panel.

Devices shown without a a constitute 14-100 panel

Replacement Capabilities-Typical Components

Note: Typical components used in Relay Slipsyn Brushless ControlRefer to RPD 8855S for renewal parts for synchronous control.

Technology Upgrades
 For Brushless-Type Relay-Panel Slipsyn (Class 14-100) Upgrades

New synchronous field controllers using the latest solid-state technology are available. Replacements and upgrades for primary starter and contactor components are also available.

Information Required from

 Customer for Upgrade
Evaluation

1. Original assembly nameplate data including general order "GO" number as well as any drawing numbers.
2. Complete motor data including horsepower, phase, voltage/Hz, RPM, FLA, LRA, full-load DC amperes, power factor, excitation voltage, induced field amperes at 95% speed and at 0% speed, and maximum time at zero speed (locked rotor).
3. Excitation control detail such as "constantpotential" or "adjustablepotential." Adjustablepotential usually requires a field rheostat (motor field-resistor).
4. Detail on the motor's function such as the application data and other service conditions such as duty-cycle, etc.

Slipsyn Automatic Field Application Panel with Static Exciter

Product Description

Automatic Field

 Application ControlThe field application panel provides Slipsyn automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device such as a circuit breaker or a linestarter. Automatic synchronization is provided by the Mark V solid-state field panel, which ensures application of the field at proper motor speed and at a favorable angular position of stator and rotor poles. As a result, line disturbance resulting from synchronization is reduced and effective motor pull-in torque is increased. Application of DC power to motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn-on" circuit when applying DC field voltage to the motor field.

This unit also comes standard with a VAR or power factor, DC field current regulator. The VAR regulator controls the AC reactive current flow out of the motor during varying load conditions by varying the motor field excitation. The PF regulator controls the motor power factor under varying load conditions by varying the motor field excitation. The DC field current regulator compensates for the motor field resistance as the motor field heats up by increasing the motor field voltage.

Note: Power factor regulationcannot provide regulation below 50% of rated voltage and/or 25\% of rated current. Regulation cannot be accomplished on light loads, i.e., less than 20\% load.

Mark V Brushless Field Controller

The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection.
B. Incomplete sequence.
C. Failure to synchronize.
D. Fuse failure (Mark V).
E. Pullout protection.
F. DC current failure protection.
This control is available in a NEMA 1 floor-mounted enclosure or an AMPGARD type cell construction. In both designs, a hinged front door with externally ventilated heat sinks will be provided.

Approximate Dimensions in Inches

Open Cell Height	Width	Depth	Floor Mounted—NEMA Height	Width	Depth
45	36	30	90	36	30

Technology Upgrades For Brushless-Type Mark V Solid-State Slipsyn (Class 14-100) Upgrades
New synchronous field controllers using the latest solid-state technology are available. Replacements and upgrades for primary starter and contactor components are also available.

Information Required from

 Customer for Upgrade Evaluation1. Original assembly nameplate data including general order "GO" number as well as any drawing numbers.
2. Complete motor data including horsepower, phase, voltage/Hz, RPM, FLA, LRA, full-load DC amperes, power factor, excitation voltage, induced field amperes at 95% speed and at 0% speed, and maximum time at zero speed (locked rotor).

Identifying Renewal Parts

Renewal parts data for the entire history of synchronous control is contained in RPD 8855S, which provides the proper identification of standard parts that may be required under normal operation:

1. Identify the design of synchronous control (Relay, Mark I, Mark II or Mark V Slipsyn) from the synchronous panel nameplate.
2. Now that you have identified the type of the synchronous control, determine from the photographs in RPD 8855 S which parts are required and identify them by style number.
3. Because many starters are supplied to meet specific customer requirements, other parts not shown in RPD 8855S might occasionally be needed. Price and availability of parts not listed may be obtained by providing a complete description of the part, along with the complete data on the starter nameplate, which is found in the low voltage area. Be sure to include the following: ratings, shop order and diagram reference.

Further Information

Publication Number	Description
RP04304009E	Common Replacement Parts for Mark V Synchronous Field Controller
RPD 8855S	Renewal Parts Data for Synchronous Control
TD.48A.01.T.E	Descriptive Bulletin for AMPGARD Starters
LL 17097	Instruction Leaflet for Relay Slipsyn
IB 48008	Instruction Leaflet for Solid-State Slipsyn
IB 48009	Instruction Leaflet for Mark V VAR/PF/DC Field Current Regulator

Pricing Information

Price and Availability Digest (PAD)

Medium Voltage Starters

Contents
Description Page
AMI AMPGARD
Product Description,
Technology
Upgrades V12-T13-91
LF Air AMPGARD
Product Description,
Replacement Capabilities,
Technology
Upgrades V12-T13-92
SL and SJ Vacuum
AMPGARD
Product Description,
Replacement
Capabilities V12-T13-94
Technology
Upgrades $\ldots .$. V12-T13-95
Further Information,
Pricing
Information $\ldots .$. V12-T13-99
AMPGARD
Originally a Westinghouse
Product

AMPGARD Motor Control Assembly

(AMI Vintage), 5000V 200A, 2500V 200A, 2500/5000V 400A (LF-Air Vintage)

Product Description

A medium voltage starter is an assembly used to control and protect an alternating current (AC) electric motor rated at 2300,4160 or 7200 V . The controlling function is provided by a magnetically held contactor. The overload protection is provided by an overload relay of some type, and the short-circuit protection is provided by a non-load break fused disconnect switch. 400A starters are typically mounted two-high in a 90 -inch high enclosure. 800A starters are mounted one-high.

Product History

The AMPGARD starter line originated in the early 1940s and has undergone two major design changes and one major evolution.

Prior to the introduction of the AMI, the AMPGARD was simply a fused motor starter in a cabinet with no disconnect switch. It was built in the early 1940s through the 1950s. There was no standard design.

The AMI AMPGARD (1950s through 1960s) was a standardized design. The AMI was one starter per structure designed to cover all ratings and incorporated a disconnect switch (ISO-Switch) in the upper compartment and either an air or oil contactor in the bottom compartment.
In the mid 1960s, a full line of starters was introduced, tailored to the horsepower requirement of the motor and using the LF air contactor. The starter incorporated the ISO-Switch and power fuses into the same cell as the air contactor. Starters were one-, two- or three-high per structure, depending on the rating required. The ratings of the LF AMPGARD were 200, 400 and 700A.

Cutler-Hammer manufactured MV motor control from 19661976. It was Bulletin 9950 Series, stacked two-high, with no specific trade name (such as AMPGARD).

The manufacturing facility moved from Buffalo, NY, to Asheville, NC, in 1978.

In the 1980s with the advent of vacuum technology, the LF air contactor design was discontinued. The SJ vacuum contactor was matched with a fused isolation switch. Now two current ratings are offered - 400 amperes, oneor two- high, and 800 amperes, one-high. Starters are sized per the motor horsepower and full load amperes.

Medium Voltage Starters

Product History Time Line

Catalog Number Selection

Old Catalog Numbering System-Contactors Only

Old Catalog Numbering System - Contactors Only

Old Catalog Numbering System - Starters (with Isolating Switch, Power Fuses, Contactor, etc.)

Old Catalog Numbering System - Contactors Only

Medium Voltage Starters

New Catalog Numbering System - SL Contactors Only

New Catalog Numbering System-SL Starters Only

AMI AMPGARD
Originally a Westinghouse Product

AMI AMPGARD Starter

Product Description

The AMI design AMPGARD starter introduced in 1957 was a complete line of starters for magnetic control of squirrel cage, wound rotor and synchronous motors. The AMI was the first front-accessible starter and was available with air break (Type H) or oil immersed (Type K) contactors. The standard AMI for full voltage starting was 30 inches deep, 38 inches wide and 90 inches high. All components were accessible from the front through three doors that opened into separate compartments. The top compartment enclosed the isolating switch and current limiting power fuses. The middle compartment enclosed the AC low voltage control panel and behind it the CTs. The bottom compartment housed the contactor.

Note: The pre-AMI design was a rear-access assembly with two compartments-current limiting fuses on the top and the contactor below.

Ratings (Maximum)

400A 1500 hp at 2500V; 2500 hp at 5000V.

Chronology

The AMI design AMPGARD was manufactured from 1957 until 1970 at the General Control Division in Buffalo, NY, and Westinghouse Manufacturing and Repair (M\&R) facilities around the country. The air contactor was available through 1966. The oil contactor was available through 1970.

Replacement Capabilities

The AMI vintage is obsolete but upgrading to the latest vacuum technology with a cell-retrofill solution is available. See Technology Upgrades for further information.

Add-On Structure

New add-on vacuum structures as an extension to the AMI type structure may be connected directly to the main bus without a transition section using special bus links. Contact your local Eaton Field Sales office.

Technology Upgrades

Standard AMI 36-Inch Wide Vacuum Starter Cell-Retrofill
This kit includes a standard full-voltage non-reversing vacuum starter in a welded cell assembly with horizontal top barriers and deep flanged doors. Optional components include a new electronic motor protection relay MP-3000 and electronic meter DP-4000. It will retrofit the AMI designs that are at least 36 inches wide and 30 inches deep. The cell is 45 inches high.

Standard AMI 36-Inch Wide Vacuum Starter CellRetrofill Style Number

Description	Style Number
SJ Contactor	$\mathbf{2 1 4 7 A 9 5 G 4 1}$
SL Contactor	$\mathbf{2 1 4 7 A 9 5 G 6 1}$

Narrow AMI 30-Inch Wide

 Vacuum Starter Cell-RetrofillThis kit includes a standard fullvoltage non-reversing vacuum starter in a welded cell assembly with horizontal top barriers and deep flanged doors. Optional components include a new electronic motor protection relay MP-3000 and electronic meter DP-4000. It will retrofit the AMI designs that are at least 30 inches wide and 30 inches deep. The cell is 58 inches high.

Narrow AMI 30-Inch Wide Vacuum Starter CellRetrofill Style Number

Description	Style Number
SJ Contactor	2147A95G42
SL Contactor	2147A95G62

AMI Starter Cell-Retrofill

Note
(1) Upper filler cover may require field modification.

LF Air AMPGARD

Originally a Westinghouse Product

The LF Air-Break Design AMPGARD Starter

Product Description

The LF air-break design AMPGARD starter was introduced in 1962. The LF design introduced the component-to-component circuitry concept. This design greatly reduced the currentcarrying connections and allowed for significant space savings.
The 25L2 and 50L2 floormounted NEMA 1 structures were 26 inches wide $\times 30$ inches deep $\times 90$ inches high. The 25 L 2 came in 1,2 or 3 starters per structure. The 50 L 2 came in 1 or 2 starters per structure.
The 25L4 and 50L4 floormounted NEMA 1 starters were 36 inches wide $\times 30$ inches deep $\times 90$ inches high. These 400A starters could have been mounted two-high per structure.

The 25L7 and 50L7 floormounted NEMA 1 starters were 40 inches wide $\times 30$ inches deep $\times 90$ inches high. These 700A starters were mounted one per vertical structure.

Ratings (Maximum)

200, 400 and 700A 2500 hp at 2500 V ; 4500 hp at 5000 V .

Chronology

The LF air-break design starter was introduced in 1962, first with the 2500V, 200A starter, then with the 5000 V design and the 400 and 700A ratings. The starters were built in Buffalo, NY, until the operation was transferred to Asheville, NC, in 1978, where it was discontinued in the late 1980s.

Replacement Capabilities

Renewal and Replacement Parts for LF Design Starters
Refer to RPD 8855A for identifying the parts needed. Among the parts available are:

- Current and potential transformers
- Control transformers
- Fuses
- O / L relays and heaters
- Isolation switches
- Some air-break contactor parts

Technology Upgrades
 Add-On Vacuum Starter Structures

New add-on vacuum structures as an extension to the LF type starter assembly may be connected directly to the main bus without a transition section.

50 L 4 (400A) Vacuum Replacement Contactor

For replacing an existing 400A LF air contactor with the directly interchangeable 400A vacuum contactor.

50 L 4 Vacuum Replacement (Front)

50 L 4 Vacuum Replacement (Rear)
400A Air-to-Vacuum
Contactor Replacement

Description	Style Number
Basic contactor 2300/120V, 750 VA transformer: SJ contactor	2147A45G01
SL contactor	2147A50G01
Basic contactor 2300/120V, 2 kVA transformer: SJ contactor	2147A45G02
SL contactor	2147A50G02
Basic contactor 4160/120V, 600 VA transformer:	
SJ contactor	2147A45G03
SL contactor	2147A50G03
Basic contactor 4160/120V,	
2 kVA transformer:	
SJ contactor	2147A45G04
SL contactor	2147A50G04

Note: Style numbers listed above identify a basic contactor that might not include other available accessories that were specified on a customer order. Contact factory with original general order number starter drawing number and date of manufacture for assistance.

400A Air-to-Vacuum Starter Cell Kit

Complete full-voltage, nonreversing, induction, vacuum AMPGARD motor starter, 400A, 7200 V maximum, for mounting in existing 36 -inch wide enclosure. Includes main contactor, isolation switch, three power fuses, MP-3000 motor protection without RTD module, threephase current transformer, vertical bus, high and low voltage doors, and welded cell assembly for mounting in existing 36 -inch wide enclosure.

400A Air-to-Vacuum Starter Cell Kit

Completely New Starter Cell

50 L7 Vacuum Retrofit
700A Air-to-Vacuum Conversion Kits
These kits will convert an existing full-voltage nonreversing 700A air break starter to vacuum.

700A Air-to-Vacuum Conversion Kit

Description	Style Number
450-630A maximum	2147A95G31
720A maximum	2147A95G32

25 L2 Vacuum Replacement Contactor

$25 L 2$ Vacuum ReplacementRear View

This solution uses the latest technology "SL" contactor and is designed to replace vintage 25L2, 2500V, 200A, 1962 air-break contactors.
\qquad

This kit is for mounting IQ family products. Includes standard AMPGARD structure construction to be used as a lineup extension. Each 90inch high $\times 30$-inch deep section comes with two doors, each with a works-in-adrawer drawout panel. Each door has a maximum of three standard IO cutouts with device panels. Supplied with or without IQ and PB devices. (Photo left shows two auxiliary sections with optional bus enclosure, IQ and PB devices.)

50 L 2 Air-to-Vacuum Retrofit Kit

This kit replaces the out-ofproduction 5000V, 200A air-break contactor with an SJ vacuum contactor, for starters built after 1974 with ISO-Switch shutter mechanism mounted in the cell. The customer keeps the existing starter cell and isolation switch and modifies the cell to accept the SJ contactor that is mechanically interlocked with the isolation switch. The rating remains 200A.

Ampacity upgrade to 320A design for pre-1974 50L2 retrofit kits available.

10 Floor-Mounted Enclosure IO Floor-Mounted Enclosure

Metering and Protective Relay Upgrades

Works-in-a-Drawer Metering and Protective Relay LV Device Panel

Classic AMPGARD

SL and SJ Vacuum AMPGARD

Originally a Westinghouse Product

SJ Vacuum AMPGARD Assembly

Product Description

The SJ vacuum contactor was designed and engineered specifically for use in AMPGARD starters. The contactor is a low-chop design that permits application matching of the starter to the motor for 2200-7200V and ratings of 400 and 800 A . The 400A contactor is available in both slide-out and roll-out configurations. The 800A contactor is available in the roll-out design only. The SJ AMPGARD is a horsepower specific starter design that uses the component-tocomponent circuitry concept. The full-voltage 400A rating in a NEMA 1 enclosure is 36 inches wide $\times 30$ inches deep x 90 inches high. These 400A starters are mounted one- or two-high per structure. The 800A rating in an enclosure is 40 inches wide $\times 30$ inches deep $\times 90$ inches high in a one-high construction for a full-voltage starter.

Ratings (Maximum)

400 and $800 \mathrm{~A}, 3000 \mathrm{hp}$ at 2500 V ; 5500 hp at 5000 V ; 8000 hp at 7200V.

Chronology

The SJ vacuum design AMPGARD starter was introduced in 1982 with the 400A rating. The 800A rating followed in 1987. With the introduction of the vacuum contactor, the air-break starter has been gradually phased out and is rarely specified in an assembly. The starters are built in Asheville, NC.
AMPGARD assemblies were made available with the new SL Contactor in late 1999. Except for the 400A frame contactor, SJ and SL AMPGARD assemblies are virtually identical.

Replacement Capabilities Renewal and Replacement Parts for SJ Design Starters

Refer to RP.48J.01.T.E for identifying the parts needed.

Common Replacement Parts for SL Design Starters

Refer to RP02003002E for identifying the parts needed.

Add-On Vacuum Starter Structures

New add-on vacuum structures as an extension to the SJ type structure may be connected directly to the main bus without a transition section. Contact your local Eaton Field Sales office.

Replacement Vacuum Contactors

New replacement vacuum break contactors are available for all SJ model ratings.

400A SL Roll-Out Replacement (Front)

400A SL Roll-Out Replacement (Rear)

400A Vacuum Roll-out Replacement Contactor

Description	Style Number
Basic contactor 2300/120V, 750 VA transformer:	
SJ contactor	2147A45G01
SL contactor	2147A50G01
Basic contactor 2300/120V, 2 kVA transformer:	
SJ contactor	2147A45G02
SL contactor	2147A50G02
Basic contactor 4160/120V, 750 VA transformer:	
SJ contactor	2147A45G03
SL contactor	2147A50G03
Basic contactor 4160/120V, 2 kVA transformer:	
SJ contactor	2147A45G04
SL contactor	2147A50G04

Note: Style numbers listed above identify a basic contactor that might not include other available accessories that were specified on a customer order. Contact factory with original general order number, starter drawing number, and date of manufacture for assistance.

400A SL Slide-Out Replacement (Rear)

Completely New Starter Cell

 400A Vacuum Starter Cell KitThe 400A vacuum starter cell kit is used to fill a blank cell in an SL or SJ AMPGARD assembly or to completely replace an existing 400A SL or SJ starter.

It is a complete full-voltage, non-reversing, induction, vacuum AMPGARD motor starter, 400A, 7200V maximum, for mounting in existing 36 -inch wide enclosure. It includes main contactor, isolation switch three power fuses, MP-3000 motor protection without RTD module, three-phase current transformer, vertical bus, high and low voltage doors, and welded cell assembly for mounting in existing 36-inch wide customer enclosure.

Description	Style Number
Slide-out with SJ	2147A95G01
Roll-out with SJ	2147A95G02
Slide-out with SL	2147A95G03
Roll-out with SL	2147A95G04

Technology Upgrades

MP-3000 and DP-4000 upgrades used for upgrading overload-relay technology from "Type-A," IQ 2000A, IQ 2000B or IQ 1000II to the latest technology. Also upgrades with a new, slideout, LV control panel.
The kit includes:

- Typical starter schematic
- 0.50 -inch deep, flange LV door with three cut-outs for new devices
- Works-in-a-drawer slide-out panel for LV control devices

Metering and Protective Relay Upgrades

Description	Style Number
DP-4000 and MP-3000 (without RTD)	2147A95G37
MP-3000 (without RTD) only	2147A95G39
DP-4000 only	2147A95G48
IO Data only	2147A95G49

Works-in-a-Drawer Metering and Protective Relay LV Device Panel

Next Generation AMPGARD

SLB and SLS Contactors AMPGARD

Next Generation AMPGARD LineupFront View

Product Description

Medium voltage control reaches a higher level of design with the next generation of Cutler-Hammer AMPGARD starters from Eaton. This product incorporates 60 years of experience with over 75,000 units installed worldwide. The SLB and SLS contactor is a low-chop design that controls 200-8000 hp motors with ratings of 400 and 800A vacuum contactors. The contactor is available in a stab (SLS) or bolted (SLB) design within the starter cell. The two-high structure design can accommodate two 400A or one 800A contactor/starter designs. The two-high structure is $36 \mathrm{~W} \times 92 \mathrm{H} \times 30$ D inches $(914.4 \times 2336.8 \times$ 762.0 mm), which includes a 12-inch high top-mounted main bus compartment.

Ratings (Maximum)

400 and 800A 3000 hp at 2500 V ; 5500 hp at 5000 V ; 8000 hp at 7200 V .

Chronology

The SLB and SLS vacuum design AMPGARD starter was introduced in 2005 with both 400 and 800A ratings to be incorporated into the next generation of AMPGARD assembly. The starters are built in Asheville, NC. The new SLS and SLB contactors will not be interchangeable with the existing SJ or SL contactors.

Replacement Capabilities

For further information, contact the Asheville plant at 1-800-523-3775.

Stab-In AMPGARD 400A Contactor-Rear View

Stab-In AMPGARD 800A
Contactor-Rear View

AMPGARD IT. Soft Start Components

The Cutler-Hammer AMPGARD IT. Soft Start components are now available for upgrading existing full-voltage and reduced-voltage starters. The requirements to convert starters into AMPGARD IT. Soft Start will depend on specific configurations of the existing starter. Space will be required for two 36 -inch wide, 45 -inch high cells that are ideally mounted in the same vertical structure. The upper compartment contains the ' M ' Contactor Cell and the lower compartment contains the SCR Truck Cell. The new door provided with the SCR Truck Cell includes the MV801 control module and is made to interlock with the door on the upper compartment.

If the targeted upgrade is for a FVNR AMPGARD starter presently located in the upper compartment, then the conversion is simplified by using the existing FVNR starter as the ' M ' contactor cell and converting the bottom compartment into the SCR truck cell. The ' M ' contactor load terminals are connected to the SCR truck cell terminals using three copper bus connectors. Available SCR truck ratings include 200A and 400A. See Page V12-T13-98 for a description of other existing starter configurations. The advanced diagnostics included in the MV801 control module include:

- Phase loss
- Phase imbalance
- Jam
- Stall
- Over/undervoltage
- Motor overload

MV801 Control Module

AMPGARD IT. Soft Start

SCR Truck Cell

AMPGARD IT. Soft Start (Doors Open)

SCR Truck (Rear)

Typical AMPGARD Starter Configurations

Example 1
(Before Retrofit)

Note: Example 1—Upper Compartment must be converted to ' M ' contactor cell. Lower compartment must be converted into SCR truck cell.

Example 3 (Before Retrofit)

Example 1 and 2
(After Retrofit)

Note: Example 2-Upper compartment FVNR can be used as the ' M ' contactor cell. Lower compartment must be converted to SCR truck cell.
Example 2
(Before Retrofit)
 truck cell.

Example 3 (After Retrofit)

Note: Example 3-'M'
contactor cell can be relocated to
upper compartment. Lower
compartment must be converted
into SCR truck cell.

AMPGARD Solutions Overview

AMPGARD Selection Table

AMPGARD Aftermarket Products Available									
Installed Equipment	Vintage	Add-on Structure	Cell ${ }^{2}$	Isolation Switch	Contactor ${ }^{4}$	Parts ${ }^{\text {(5) }}$	Vacuum Replacements	Class 1 Reconditioning	Reference Material
AMPGARD OIL	1945-1957						■		-
AMPGARD AH	1948-1957						\square		-
AMPGARD AMI	1948-1957						■		-
AMPGARD 25L2	1962-1990	\square				■ ${ }^{\text {(6) }}$	\square	\square	RPD8855A
AMPGARD 50L2	1963-1981	\square				■ ${ }^{\text {(6) }}$	\square	\square	RPD8855A
AMPGARD 50V4	1972-1979	\square	\square	\square			\square	\square	RP48J01TE
AMPGARD 25/50L4	1966-1989	\square	\square	\square		■ ${ }^{\text {© }}$	\square	\square	RPD8855A
AMPGARD 25/50L7	1969-1989	\square		\square		■ ${ }^{\text {(6) }}$	\square	\square	RPD8855A
AMPGARD V202 (SJ) 400A	1982-2000	\square	RP48J01TE						
AMPGARD S202 (SJ) 400A	1987-2000	\square	RP48J01TE						
AMPGARD W210 (SL) 400A	2000-	\square	RP02003002E						
AMPGARD F210 (SL) 400A	2000-	\square	\square	\square	\square	■	\square	■	RP02003002E
AMPGARD V202 (SJ) 800A	1985-	\square		\square	■	■	■	\square	RP48J01TE
Synchronous Control	1950-	\square	■			\square			RP04304009E

Notes

(1) Add-on structures contain vacuum starters only.
(2) Complete cell including frame, ISO-switch, vacuum or air contactor, and all components to complete a starter.
${ }^{(3)}$ Isolation switch only (LFR replaced LFM after 1974).
(4) Complete contactor, available in SJ or SL.
(5) New, genuine parts per original specs.

Vacuum replacements- OIL, AH, AMI (one-high starters)
25L2

50L2

50V4
25/50L4
Synchronous
25/50L7
© Check with factory.

Complete Cell Retrofill
Vacuum Replacement Contactor
Vacuum Retrofit Kit
Vacuum Replacement Contactor
Vacuum Replacement Contactor
Mark V Solid-State Control Retrofit
Vacuum Replacement Contactor and Some Cell Modification

Further Information

Publication Number	Description
RPD8855A	Renewal Parts Data for AMPGARD LF Air-Break Vintage 200-700A
RPD8855S	Renewal Parts Data for AMPGARD Slipsyn Synchronous Control
RP48J01TE	Renewal Parts for AMPGARD SJ Vacuum-Break Vintage 400-800A
RP02003002E	Common Renewal Parts for AMPGARD SL 400A Vacuum Contactors
TD48A01ATE	Technical Data for AMPGARD MV Starters
PG48C01TE	Product Guide "SL" Medium Voltage Vacuum Contactors
B48008	Instructions for AMPGARD Mark V Solid-State, Brush-Type, Synchronous Motor Controllers
B48009	Instructions for AMPGARD Synchronous Motor Field Regulator with VAR and PF Control

Pricing Information

Price and Availability Digest (PAD)

