
Technical Information

11 Displacements	(4.9 - 29.1 in³/rev) 81 477 cm³/rev				
Maximum Pressure	Cont. (3000 psid) 207 bar	Int. (4000 psid) 276 bar			
Maximum Oil Flow		(25 gpm) 95 lpm			
Maximum Speed		(749 rpm) 749 rpm			
Maximum Torque	Cont. (6027 lb in) 681 Nm	Int. (8106 lb in) 916 Nm			
Maximum Side Load a	(3597 lb) 16000 N				

A Tough Motor for Tough Applications

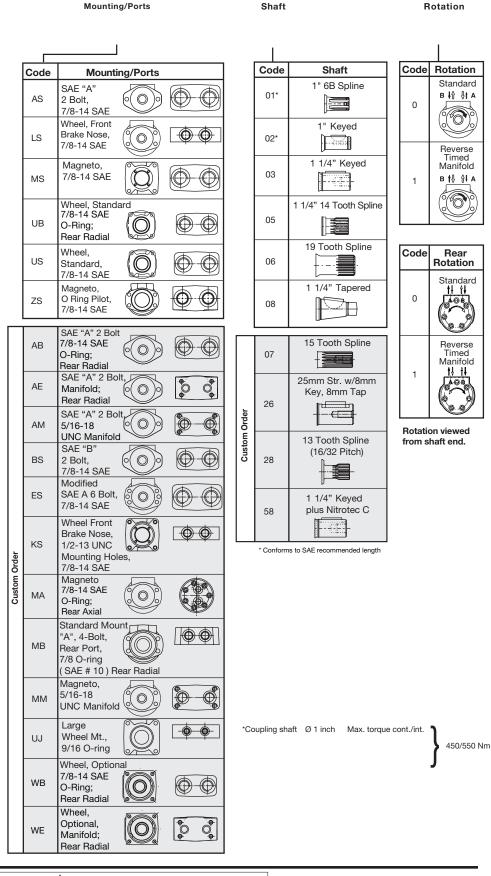
Sturdy construction throughout makes Parker's TF Series motors suitable for the most severe applications. The powertrain uses unique 60:40 spline geometry for strength. All splines are constantly flushed with cool fluid for durability. Roller vanes and sealed commutation assure high volumetric efficiency, smooth low speed operation and extended life. Shaft seals can withstand full system pressure and are washed in cool fluid for long life.

🛕 WARNING

XX

Х

40


ø -00

Series

_	
Code	cm³/U cm³/tr cm³/giro in ³/rev
0080	81 / 4.9
0100	100 / 6.1
0130	128 / 7.8
0140	141 / 8.6
0170	169 / 10.3
0195	197 / 11.9
0240	238 / 14.5
0280	280 / 17.1
0360	364 / 22.2
0405	405 / 24.7
0475	477 / 29.1

Displacement

XX

\rm MARNING

Options Opciones

Code	Options
AAAA ⁸	"Standard", Black Paint
AAAB	"Standard", No Paint
AAAC ⁸	"Standard", Double Paint
AABJ ⁸	Free Running Rotor Set, Black Paint
AABT ^{1,3,8}	No Nut, Black Paint
AAFA	Fluorocarbon Seals, High Temp Commutator Seal, No Paint
AAFW ⁸	Fluorocarbon Seals, High Temp Commutator Seal, Black Paint
AAJH ^{1,3,8}	Fluorocarbon Seals, High Temp Commutator Seal, Black Paint
AAJL ^{1,3}	No Nut, No Paint
AAUP ^{1,3}	Fluorocarbon Seals, High Temp Commutator Seal, No Nut, No Paint
AAVE ⁸	Free Running Rotor Set, Fluorocarbon (Viton) Seals, High Temp Commutator Seal, High Temp Section Seals, Black Paint
ABCW ^{1,3,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, High Temp Section Seals, Bidirectional shuttle (.062 Orifice) (11:00*), Black Paint
ABCZ ⁸	Fluorocarbon Seals, High Temp Commutator Seal, High Temp Section Seals, Double paint
BBGV ^{1,4,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 1015 PSI Int Bidirectional Relief, Black Paint
BBGW ^{1,4,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 1450 PSI Int Bidirectional Relief, Black Paint
BBGX ^{1,4,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 2031 PSI Int Bidirectional Relief, Black Paint
BBGY ^{1,4,5,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 3046 PSI Int Bidirectional Relief, Black Paint
BBGZ ^{1,4,6,7,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 4061 PSI Int Bidirectional Relief, Black Paint
BBHC ⁸	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 725 PSI Int Bidirectional Relief, Black Paint
BBHD ⁸	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, 2538 PSI Int Bidirectional Relief, Black Paint
FSEK ^{1,2,3,8}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, High Temp Section Seals, Parker ECD Speed Sensor, Black Paint
FSEN ^{1,2,3}	No Shaft Hardware, Fluorocarbon Seals, High Temperature Commutator Seal, High Temp Section Seals, Parker ECD Speed Sensor, No Paint

¹ No Nut with shaft code 08

² Not applicable with shaft code 58

³ No bolt, washer or lock washer with shaft code 03, 05 and 58

⁴ No bolt, washer or lock washer with shaft code 03, 58 or 62

⁵ Not applicable with displacement 0360, 0405 or 0475

⁶ Only available with displacement 0080 ⁷ Only available with front porting option

⁸ Paint area all over except front and rear pilot and mounting flanges and shaft

	Geometric displace	Max, socied @ Max.	Max miemitent ff	mo. moy mo	Mar. a.	alferential Dros	Max. Supply Dressin	More t	enbuo,	Max. Derformance	Min. S.	to the second second	
Motor Series TF	cm³/rev in ³ /rev	rev/min	cont I/m g/n	/ <i>int*</i> nin	cont ba ps	ar	max bar psig	N	/	max KW HP		/ int* m -in	
TF 0080	81 4.9	693	46 12	57 15	207 3000	276 4000	300 4350	220 1948	296 2621	21.5 28.8	158 1401	205 1811	
TF 0100	100 6.1	749	57 15	76 20	155 2250	241 3500	300 4350	197 1746	318 2813	24.9 33.4	148 1309	243 2155	
TF 0130	128 7.8	583	57 15	76 20	138 2000	207 3000	300 4350	229 2031	356 3148	21.7 29.1	180 1596	278 2460	
TF 0140	141 8.6	530	57 15	76 20	138 2000	207 3000	300 4350	254 2248	393 3477	21.8 29.2	196 1739	308 2728	
TF 0170	169 10.3	444	57 15	76 20	138 2000	207 3000	300 4350	317 2808	489 4324	22.7 30.5	243 2152	385 3404	
TF 0195	197 12.0	381	57 15	76 20	138 2000	207 3000	300 4350	364 3222	562 4971	22.4 30.1	302 2671	468 4142	
TF 0240	238 14.5	394	76 20	95 25	138 2000	207 3000	300 4350	427 3782	670 5928	27.7 37.1	366 3242	572 5058	
TF 0280	280 17.1	334	76 20	95 25	138 2000	207 3000	300 4350	509 4502	794 7029	27.8 37.3	438 3876	672 5946	
TF 0360	364 22.2	258	76 20	95 25	130 1880	190 2750	300 4350	594 5257	880 7788	20.0 26.8	517 4575	779 6898	
TF 0365 Clutch	364 22.2	258	76 20	95 25	97 1400	152 2200	300 4350	437 3871	740 6456	20.0 26.8	398 3521	650 5749	
TF 0405	405 24.7	231	76 20	95 25	128 1850	172 2750	300 4350	655 5800	916 8106	22.1 29.7	575 5091	789 6978	
TF 0475	477 29.1	195	76 20	95 25	113 1645	138 2000	300 4350	681 6027	851 7528	17.4 23.3	603 5334	740 6548	

Performance data based on testing using 10W40 oil with a viscosity of 43.1 cSt (200 SUS) at 54° C (130° F.) Performance data is typical. Actual data may vary slightly from one production motor to another.

* Intermittent operation rating applies to 10% of every minute.

TF 0080 4.9 cu in / rev

T1			ICA					
						PRES	SURE	(PSID)
	500	1000	1500	2000	2500	3000	3500	4000
.5	256 19	546 14	835 8	1118 1	1			
1	270	575	867	1151	1434		2002	2289
<u> </u>	42	37	31	24	17	13	12	13
2	281	598	917	1233	1537	1821	2090	2352
2	89	83	76	68	60	53	46	40
2	282	601	922	1238	1547	1845	2138	2428
3	135	128	121	113	104	96	86	78
4	284	610	938	1264	1586	1899	2202	2491
4	182	174	166	158	149	139	129	120
F	282	612	944	1278	1607	1932	2250	2560
5	228	219	211	202	193	183	172	163
7	274	607	945	1285	1622	1957	2288	2612
7	321	311	301	291	281	270	258	247
•	262	597	937	1279	1622	1960	2295	2628
9	414	402	391	380	369	357	344	331
10	239	574	916	1260	1605	1948	2287	2621
12	553	540	526	514	501	488	472	456
4.5	215	546	886	1231	1579	1927	2269	2605
15	693	677	661	646	633	619	601	582
Floy	v (GP	NA)						7
1100		141)						
							T	ORQU

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

2605

582

(RPM)

SPEED

TF 0100 6.1 cu in / rev

U		i in /	rev			PRES	SURE	(PSID)
	⁵⁰⁰	1000	1500	2000	2250	2500	3000	3500
.5	318 14	679 9	1041 4					
1	335 33	703 28	1066 22	1430 17	1611 14	1791 12	2162 9	
2	351 71	743 65	1132 58	1514 52	1700 48	1882 45	2241 39	2602 34
3	350 109	746 102	1138 95	1525 88	1717 84	1907 80	2288 72	-
4	353 147	754 139	1156 132	1554 124	1752 120	1948 116	2334 107	-
5	352 184	759 177	1167 169	1572 161	1774 156	1974 152	2370 143	-
7	343 260	753 252	1166 243	1581 233	1788 229	1994 224	2401 213	
9	329 336	741 327	1159 316	1579 306	1788 301	1997 296	2411 284	2824 272
12	299 449	715 438	1137 426	1561 415	1773 409	1985 403	2406 391	
15	259 562	679 549	1106 536	1532 523	1746 517	1959 510	2387 496	
20	186 749	607 734	1034 718	1463 703	1679 696	1896 689	2331 671	2763 653
Flo	ow (GP	PM)						
							Ć	TORQU SPEED

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

2763 653

	0130	-							
7.8	3 cu	in /	rev		SURE	(PSID)			
	500	1000	1500	2000	2500	3000			
.5	441 10	927 7	1413 3						
1	456 24	948 21	1440 17	1935 13	2422 9	2909 5			
2	478 52	991 47	1495 42	2004 36	2508 32	3009 29			
3	475 82	993 76	1510 70	2023 63	2533 57	3042 52			
4	479 112	1006 105	1529 98	2048 91	2568 85	3084 79			
5	478 141	1014 134	1548 127	2076 119	2600 113	3115 106			
7	467 200	1010 192	1553 184	2094 176	2632 169	3166 161			
9	447 259	996 251	1546 242	2094 233	2640 225	3184 216			
12	410 348	961 338	1518 328	2073 318	2626 309	3177 299			
15	365 436	914 426	1474 415	2031 404	2589 394	3148 382			
20	263 583	812 572	1371 559	1933 547	2498 535	3059 522			
Flov	v (GP	PM)				\square			
						TORQU SPEED	(LB IN) (RPM)	3059 522	>
									-

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

TF 0140 8.6 cu in / rev

	PRESSURE (PSID) 1 500 ,1000 ,1500 ,2000 2500 3000												
	500	1000	1500	2000	2500	3000							
.5	485 11	1025 8	1560 4										
1	507 24	1056 20	1594 16	2137 12	2682 8	3224 5							
2	526 50	1101 46	1670 42	2237 37	2796 33	3336 28							
3	525 77	1103 72	1676 68	2246 63	2814 57	3370 52							
4	528 103	1114 98	1696 93	2277 88	2857 82	3423 77							
5	528 130	1120 125	1712 119	2301 113	2885 107	3456 101							
7	516 184	1115 177	1716 170	2314 164	2908 158	3497 151							
9	496 237	1100 230	1707 222	2311 215	2912 208	3510 200							
12	454 317	1063 309	1677 300	2290 292	2901 284	3506 275							
15	403 397	1011 388	1629 378	2248 368	2866 359	3477 349							
20	298 530	908 520	1525 508	2149 497	2775 485	3401 473							
Flov	v (GP	PM)				$\overline{}$							
								(LB IN (RPM		3401 473	>		

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

TF 0170 **10.3** cu in / rev

PRESSURE (PSID)

	500	1000	1500	2000	2500	3000
.5	627 8	1304 6	1980 2			
1	657	1341	2021	2714	3404	4101
	19	16	12	9	4	1
2	687	1409	2123	2829	3520	4197
	42	38	34	29	25	21
3	681	1407	2127	2841	3552	4263
	64	60	56	51	45	40
4	681	1419	2153	2879	3604	4321
	86	82	77	72	67	61
5	675	1423	2165	2897	3628	4355
	109	104	99	94	88	82
7	654	1406	2161	2911	3652	4385
	153	148	143	137	130	123
9	624	1380	2143	2900	3645	4384
	198	193	186	180	173	165
12	572	1331	2101	2863	3618	4364
	265	259	252	244	236	228
15	514	1267	2040	2808	3570	4324
	332	325	317	309	300	291
20	387	1138	1903	2667	3435	4201
	444	436	427	417	407	396

Flow (GPM)

TORQUE (LB IN) 4201 SPEED (RPM) 396

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

TF 0195 1

12.0 cu in / rev										
				PRES	SURE	(PSID)				
	500	1000	1500	2000	2500	3000				
.5	710 8	1494 7	2286 5	3085 3						
1	737 18	1537 16	2334 14	3133 12	3946 9	4767 7				
2	757 37	1587 35	2417 32	3242 29	4067 26	4887 23				
3	758 56	1591 53	2424 51	3254 47	4086 44	4914 40				
4	759 75	1604 72	2450 69	3292 66	4131 62	4965 58				
5	755 94	1610 91	2469 88	3321 84	4163 80	5000 75				
7	737 132	1599 129	2467 125	3329 120	4185 116	5034 110				
9	709 170	1577 166	2451 162	3319 157	4181 152	5034 146				
12	652 228	1523 223	2405 218	3283 212	4154 206	5018 199				
15	586 285	1451 280	2338 273	3222 267	4100 260	4971 252				
20	445 381	1303 375	2174 367	3056 359	3939 350	4822 341				

Flow (GPM)

TORQUE (LB IN) 4822 (RPM) 341 SPEED

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

This product can expose you to chemicals including lead which is known to the State of California to cause cancer, and DEHP which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Cont. Int.

TF 0240 **14.5** cu in / rev

		PRESSURE (PSID)										
	500	1000	1500	2000	2500	3000						
.5	856 7	1796 5	2758 3	3739 1								
1	883	1838	2801	3780	4756	5741						
	15	13	11	8	5	3						
2	920	1912	2910	3895	4880	5864						
	30	28	26	23	20	17						
3	919	1920	2927	3931	4924	5919						
	46	44	41	38	35	31						
4	924	1941	2958	3967	4978	5985						
	62	60	57	54	50	45						
5	919	1948	2975	3998	5017	6025						
	78	75	72	69	64	60						
7	904	1947	2995	4036	5066	6090						
	109	106	103	99	94	89						
9	868	1922	2982	4033	5072	6101						
	141	137	134	130	124	119						
12	815	1866	2930	3998	5053	6090						
	188	184	180	175	169	162						
15	726	1791	2865	3934	5002	6054						
	235	231	227	221	214	206						
20	539	1616	2699	3782	4863	5928						
	315	310	304	297	289	280						
25	335	1404	2464	3542	4634	5718						
	394	389	382	374	365	354						

Flow (GPM)

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

🛕 WARNING

TF 0280 **17.1** cu in / rev

1	1080 13	2237 12	3399 11	4577 9	5762 7	6925 5	
.5	1048 6	2180 5	3333 4	4508 3	5704 2		
	500	1000	1500	2000	2500	3000	
				PRES	SURE	(PSID)	

1	13	12	11	9	7	5			
2	1120 26	2316 25	3516 23	4726 22	5915 19	7092 17			
3	1117 39	2320 38	3528 36	4742 34	5949 32	7134 29			
4	1120 53	2337 51	3559 49	4778 47	5988 44	7187 41			
5	1109 66	2342 64	3575 62	4802 60	6020 56	7218 53			
7	1086 93	2331 91	3582 88	4827 85	6058 81	7266 77			
9	1040 120	2299 117	3562 114	4811 111	6048 106	7264 102			
12	978 160	2226 157	3494 154	4758 149	6001 144	7217 138			
15	888 200	2146 197	3419 193	4688 188	5945 182	7176 175			
20	678 267	1945 263	3223 258	4502 252	5777 245	7029 236			
25	442 334	1686 330	2938 324	4206 316	5487 308	6754 297			
Flov	v (GP	PM)					 FORQUE	-	

□ Cont. □ Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

🛕 WARNING

6754

297

(RPM)

SPEED

TF 0360 22.2 cu in / rev

		PRESSURE (PSID) 500 1000 1500 1850 2000 2500 2750												
	500	1000	1500	1850	2000	2500	2750							
.5	1436	2955	4497	5582	6047	7608	8393							
	5	4	4	4	3	3	3							
1	1492	3042	4591	5672	6136	7673	8445							
	10	9	9	8	8	8	7							
2	1532	3114	4691	5784	6249	7799	8575							
	20	19	19	18	18	17	16							
3	1527	3114	4699	5796	6263	7814	8590							
	30	29	29	28	27	26	25							
4	1526	3125	4718	5821	6290	7847	8624							
	40	40	38	37	37	35	34							
5	1504	3114	4719	5831	6304	7866	8641							
	51	50	48	47	46	44	43							
7	1469	3090	4697	5809	6282	7850	8630							
	71	70	68	66	66	63	61							
9	1392	3017	4640	5766	6243	7817	8595							
	92	90	88	86	85	81	79							
12	1279	2902	4526	5653	6133	7712	8493							
	122	120	117	115	113	109	106							
15	1106	2739	4385	5518	5999	7578	8355							
	153	151	147	144	142	139	134							
20	840	2465	4115	5256	5735	7329	8121							
	204	202	197	193	191	184	180							
25	516	2138	3756	4876	5356	6976	7785							
	255	253	248	243	240	232	226							

Flow (GPM)

\checkmark	TORQUE	(LB IN)	7785	
(SPEED	(RPM)	226)
			/	

Cont. Int.

Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

TF 0405

-

24	. / (cu ir	n / re	ev.		
				PRES	SURE	(PSID)
	500	1000	1500	1850	2000	2500
.5	1567	3212	4883	6075	6587	8325
	4	4	3	2	2	2
1	1623	3298	4972	6151	6660	8371
	9	8	7	6	6	5
2	1662	3377	5103	6306	6815	8507
	18	17	16	14	14	12
3	1665	3392	5118	6325	6839	8554
	27	26	24	23	22	20
4	1667	3414	5155	6367	6880	8591
	37	35	33	32	31	28
5	1652	3417	5171	6393	6909	8625
	46	44	42	40	39	36
7	1623	3399	5163	6392	6912	8638
	64	62	60	58	56	53
9	1549	3337	5125	6361	6883	8605
	83	81	78	75	73	69
12	1432	3216	5006	6252	6779	8523
	111	108	104	101	99	94
15	1259	3059	4866	6113	6644	8394
	138	136	131	128	126	120
20	936	2735	4542	5800	6335	8106
	185	182	177	172	170	162
25	657	2435	4187	5418	5945	7709
	231	229	222	217	214	205

Flow (GPM)

SPEED	(RPM)	205	
TORQUE	(LB IN)	7709	

)

Cont. Int.

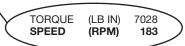
Intermittent operation rating applies to 10% of every minute.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

TF 0475

2

29	29.1 cu in / rev													
		1000	1500			(PSID)								
			1500	1645	1850	2000								
.5	1870	3857	5875	6460	7292	7902								
	4	3	3	3	2	2								
1	1941	3967	5992	6582	7410	8016								
	8	7	7	6	6	6								
2	2003	4071	6124	6717	7554	8166								
	15	15	14	14	13	13								
3	1994	4072	6145	6738	7578	8192								
	23	23	22	21	20	20								
4	1993	4091	6177	6776	7620	8235								
	31	30	29	28	27	27								
5	1964	4081	6186	6790	7639	8258								
	39	38	37	36	35	34								
7	1918	4048	6159	6765	7620	8242								
	55	54	52	51	50	48								
9	1829	3965	6098	6709	7565	8189								
	70	59	67	66	64	63								
12	1694	3822	5954	6575	7440	8063								
	94	92	89	89	87	85								
15	1462	3617	5766	6385	7254	7875								
	117	116	112	111	109	107								
20	1070	3231	5394	6027	6900	7530								
	156	154	151	149	147	145								
25	711	2820	4927	5531	6391	7028								
	195	194	190	188	185	183								


TF 0365 Clutch Motor

22.2 cu in / rev

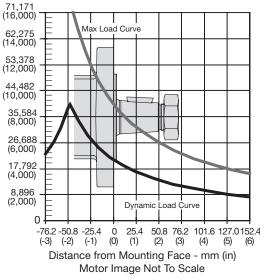
	PRESSURE (PSID)													
	500	1000	1400	1500	2000	2200								
.5	1392	2902	4131	4441	6013	6653								
	5	4	3	3	2	2								
1	1439	2972	4208	4518	6090	6725								
	10	9	8	8	7	7								
2	1478	3061	4332	4651	6248	6884								
	20	19	18	18	17	16								
3	1478	3071	4349	4670	6268	6906								
	30	29	29	28	27	26								
4	1480	3089	4379	4703	6311	6950								
	41	40	39	38	37	36								
5	1467	3096	4396	4720	6332	6971								
	51	50	49	49	47	46								
7	1434	3072	4384	4712	6344	6990								
	72	70	69	69	66	65								
9	1378	3031	4355	4686	6322	6970								
	92	91	89	89	86	85								
12	1278	2922	4252	4585	6242	6897								
	123	122	120	119	116	115								
15	1158	2810	4139	4470	6127	6787								
	154	152	150	150	146	144								
20	873	2531	3871	4206	5878	6546								
	206	204	202	201	197	194								
25	557	2197	3509	3839	5498	6175								
	258	255	253	252	247	244								

Flow (GPM)

Flow (GPM)

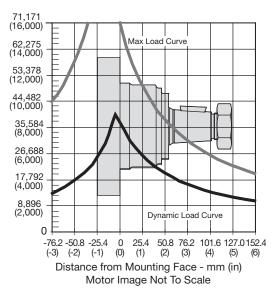
Cont. Int.

Intermittent operation rating applies to 10% of every minute.


Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

🔥 WARNING

Flange Mount


Side Load - N (lbs)

The dynamic side load curve is based on unidirectional steady state loads for L₁₀ bearing life at 3 x 10⁶ revolutions.

Wheel Mount

Side Load - N (lbs)

The maximum load curve is defined by bearing static load capacity. This curve should not be exceeded at any time including shock loads.

Equation to Calculate the Expected Radial Bearing Life

Equation to calculate the dynamic bearing life for a given load:

Use F_a , F_b and S in equation to determine hours of L_{10} bearing life.

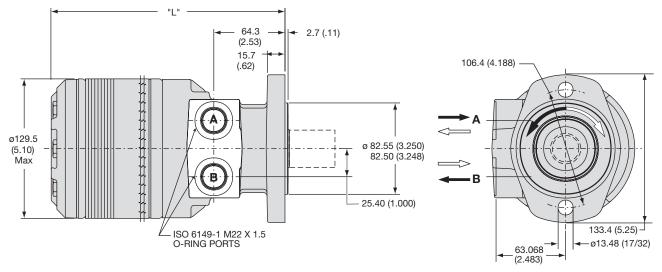
$$L = \frac{3 \times 10^{6}}{60 \times S} \left\{ \frac{F_{a}}{F_{b}} \right\}^{3.33}$$

Where / Mit:

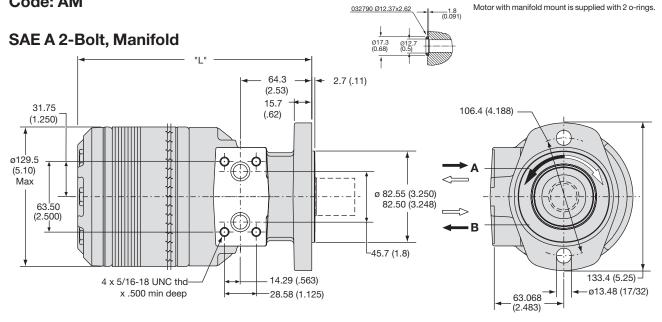
S = Shaft Speed RPM

L = Life In Hours

 $\rm F_a$ = Dynamic side load defined by above curve at a distance from mounting flange. $\rm F_b$ = Application side load.


Note: Calculations are based on L_{10} bearing life per ISO 281.

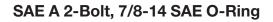
🛕 WARNING

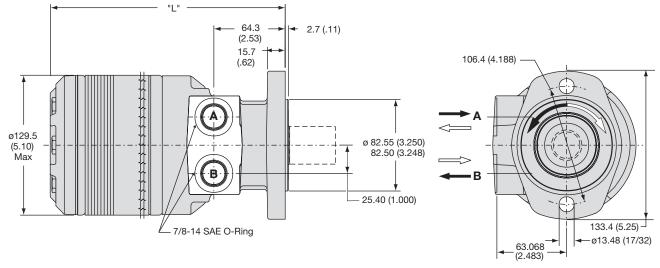

Code: AH

SAE A 2-Bolt, ISO 6149-1 M22 x 1.5

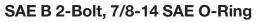
Code AH	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	t kg	13.6	13.6	13.8	13.9	14.2	14.5	14.9	15.2	16.0	16.5	17.2
Poids/Peso	(lb)	(29.9)	(30.0)	(30.5)	(30.7)	(31.3)	(31.9)	(32.9)	(33.5)	(35.2)	(36.4)	(37.9)
Length	"L" mm	190.8	190.8	193.8	195.6	198.6	201.9	207	211.3	221.0	225.3	233.7
	"L" (in)	(7.51)	(7.51)	(7.63)	(7.70)	(7.82)	(7.95)	(8.13)	(8.32)	(8.70)	(8.87)	(9.20)

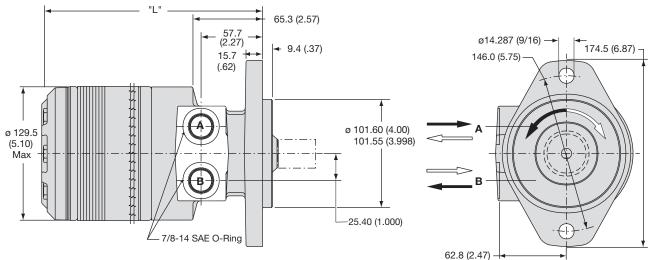
Code: AM


Code AM	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	nt kg	13.6	13.6	13.8	13.9	14.2	14.5	14.9	15.2	16.0	16.5	17.2
Poids/Peso	(lb)	(29.9)	(30.0)	(30.5)	(30.7)	(31.3)	(31.9)	(32.9)	(33.5)	(35.2)	(36.4)	(37.9)
Length	"L" mm	190.8	190.8	193.8	195.6	198.6	201.9	207	211.3	221.0	225.3	233.7
	"L" (in)	(7.51)	(7.51)	(7.63)	(7.70)	(7.82)	(7.95)	(8.13)	(8.32)	(8.70)	(8.87)	(9.20)


English equivalents for metric specifications are shown in ().

🛕 WARNING

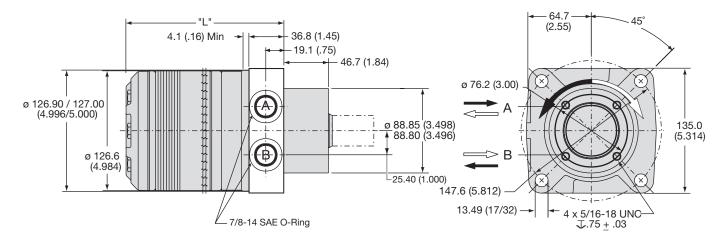

Code: AS



Code AS	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	t kg	13.6	13.6	13.8	13.9	14.2	14.5	14.9	15.2	16.0	16.5	17.2
Poids/Peso	(lb)	(29.9)	(30.0)	(30.5)	(30.7)	(31.3)	(31.9)	(32.9)	(33.5)	(35.2)	(36.4)	(37.9)
Length	"L" mm	190.8	190.8	193.8	195.6	198.6	201.9	206.5	211.3	221.0	225.3	233.7
	"L" (in)	(7.51)	(7.51)	(7.63)	(7.70)	(7.82)	(7.95)	(8.13)	(8.32)	(8.70)	(8.87)	(9.20)

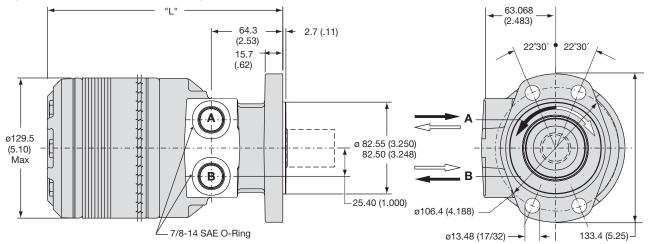
Code: BS

Code BS	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewicht	t kg	14.2	14.2	14.5	14.6	14.8	15.1	15.5	15.8	16.6	17.1	17.8
Poids/Peso	(lb)	(31.3)	(31.4)	(31.9)	(32.1)	(32.7)	(33.3)	(34.3)	(34.9)	(36.6)	(37.8)	(39.3)
Length '	'L" mm	184.2	184.2	187.2	189.0	198.6	195.3	200.0	204.8	214.3	218.4	227.1
	"L" (in)	(7.25)	(7.25)	(7.37)	(7.44)	(7.56)	(7.69)	(7.87)	(8.06)	(8.44)	(8.60)	(8.94)


English equivalents for metric specifications are shown in ().

A WARNING

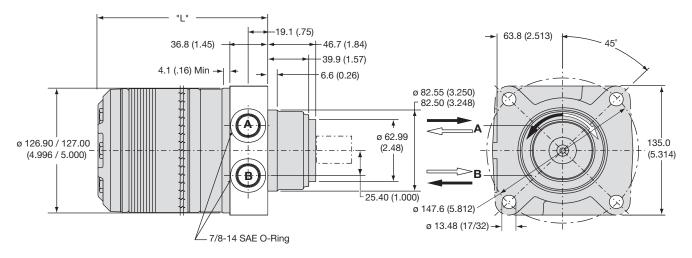
Code: LS


Wheel, Front Brake Nose

Code LS	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	t kg	14.0	14.0	14.2	14.3	14.6	14.9	15.3	15.6	16.3	17.0	17.5
Poids/Peso	(lb)	(30.9)	(30.9)	(31.2)	(31.5)	(32.1)	(32.9)	(33.7)	(34.4)	(35.9)	(37.5)	(38.6)
Length	"L" mm	145.5	145.5	148.6	150.4	153.4	156.7	161.3	166.1	175.8	180.0	188.5
	"L" (in)	(5.73)	(5.73)	(5.85)	(5.92)	(6.04)	(6.17)	(6.35)	(6.54)	(6.92)	(7.08)	(7.42)

Code: MS

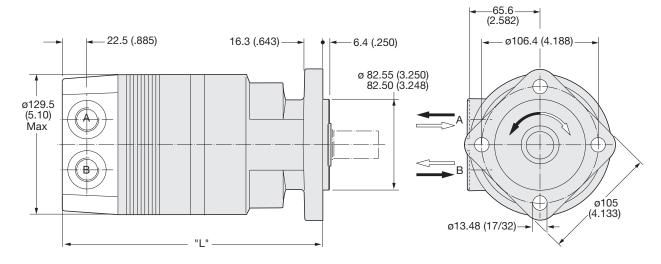
Magneto, 7/8-14 SAE O-Ring


Code MS	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	nt kg	13.6	13.6	13.8	13.9	14.2	14.5	14.9	15.2	16.0	16.5	17.2
Poids/Peso	(lb)	(29.9)	(30.0)	(30.5)	(30.7)	(31.3)	(31.9)	(32.9)	(33.5)	(35.2)	(36.4)	(37.9)
Length	"L" mm	190.8	190.8	193.8	195.6	198.6	201.9	206.5	211.3	221.0	225.3	233.7
	"L" (in)	(7.51)	(7.51)	(7.63)	(7.70)	(7.82)	(7.95)	(8.13)	(8.32)	(8.70)	(8.87)	(9.20)

English equivalents for metric specifications are shown in ().

🛕 WARNING

Code: US

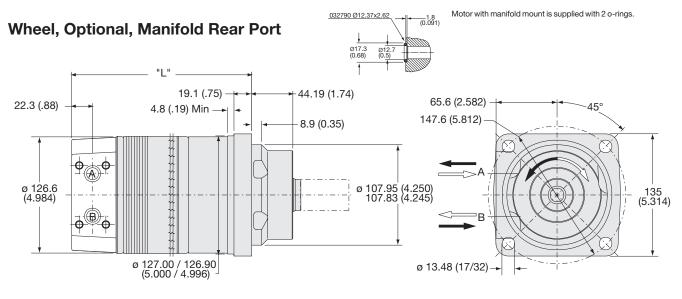


Wheel, Standard, 7/8-14 SAE O-Ring

Code US	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	nt kg	13.9	13.9	14.2	14.3	14.5	14.8	15.2	15.5	16.3	16.9	17.5
Poids/Peso	(lb)	(30.6)	(30.7)	(31.2)	(31.5)	(32.0)	(32.7)	(33.6)	(34.2)	(35.9)	(37.2)	(38.6)
Length	"L" mm	145.5	145.5	148.6	150.4	153.4	156.7	161.3	166.1	175.8	179.8	188.5
	"L" (in)	(5.73)	(5.73)	(5.85)	(5.92)	(6.04)	(6.17)	(6.35)	(6.54)	(6.92)	(7.08)	(7.42)

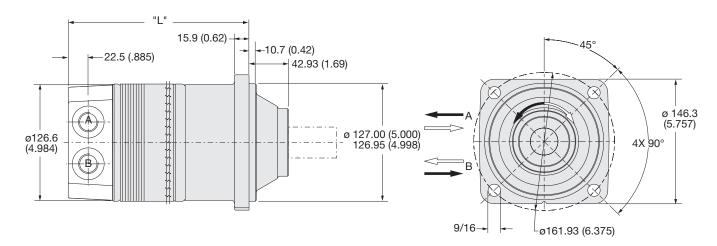
Code: VB

SAE A 4-Bolt, 7/8-14 SAE Rear Port


Code VB	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	nt kg	14.0	14.0	14.2	14.3	14.6	14.9	15.3	15.6	16.3	17.0	17.5
Poids/Peso	(lb)	(30.9)	(30.9)	(31.2)	(31.5)	(32.1)	(32.9)	(33.7)	(34.4)	(35.9)	(37.5)	(38.6)
Length	"L" mm	213.1	213.1	215.6	218.4	221.0	224.0	229.1	232.9	242.1	246.9	256.0
	"L" (in)	(8.39)	(8.39)	(8.49)	(8.60)	(8.70)	(8.82)	(9.02)	(9.17)	(9.53)	(9.72)	(10.08)

English equivalents for metric specifications are shown in ().

🛕 WARNING

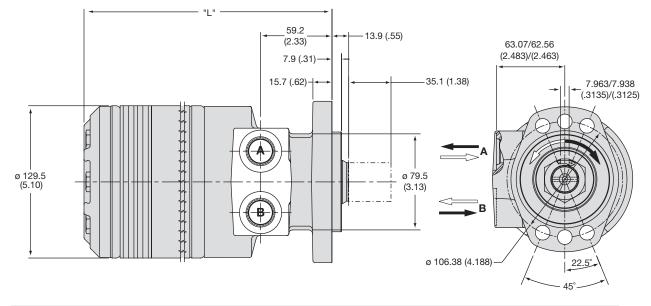

Code: WE

Code WE	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewicht	kg	16.9	16.9	17.2	17.3	17.5	17.8	18.2	18.5	19.3	19.8	20.5
Poids/Peso	(lb)	(37.2)	(37.3)	(37.8)	(38.0)	(38.6)	(39.2)	(40.2)	(40.8)	(42.5)	(43.7)	(45.2)
Length	"L" mm	172.7	172.7	176.0	177.5	180.6	183.9	188.7	193.3	202.9	207.0	215.6
	"L" (in)	(6.80)	(6.80)	(6.93)	(6.99)	(7.11)	(7.24)	(7.43)	(7.61)	(7.99)	(8.15)	(8.49)

Code: DB

Large Wheel Mount, 7/8-14 SAE Rear Port

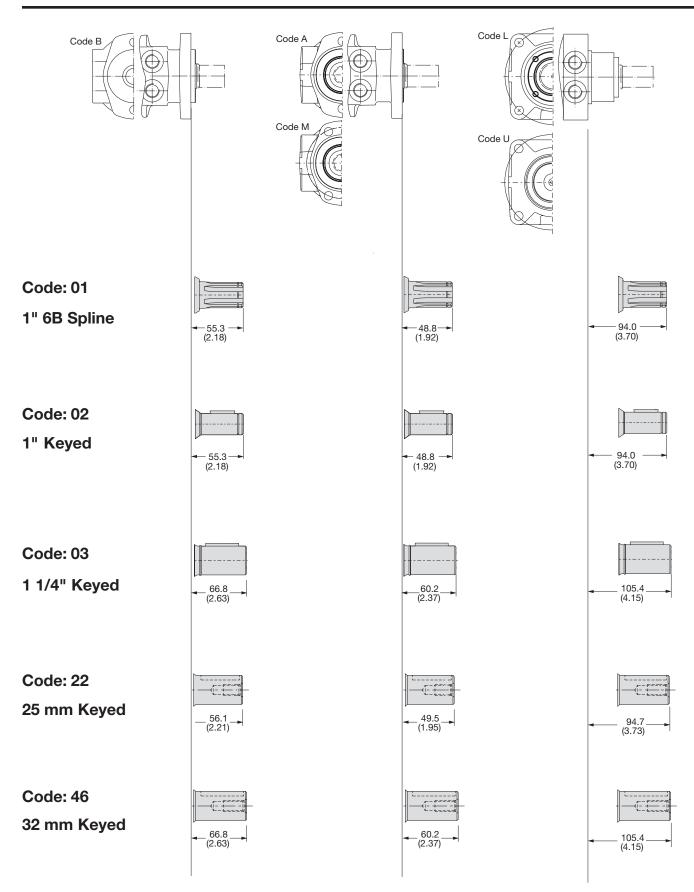
Code DB	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight	kg	16.9	16.9	17.2	17.3	17.5	17.8	18.2	18.5	19.3	19.8	20.5
	(lb)	(37.2)	(37.3)	(37.8)	(38.0)	(38.6)	(39.2)	(40.2)	(40.8)	(42.5)	(43.7)	(45.2)
Length	"L" mm	173.0	173.0	175.5	178.8	182.1	185.2	190.0	194.8	200.9	208.5	216.9
	"L" (in)	(6.81)	(6.81)	(6.91)	(7.04)	(7.17)	(7.29)	(7.48)	(7.67)	(7.91)	(8.21)	(8.54)


English equivalents for metric specifications are shown in ().

🛕 WARNING

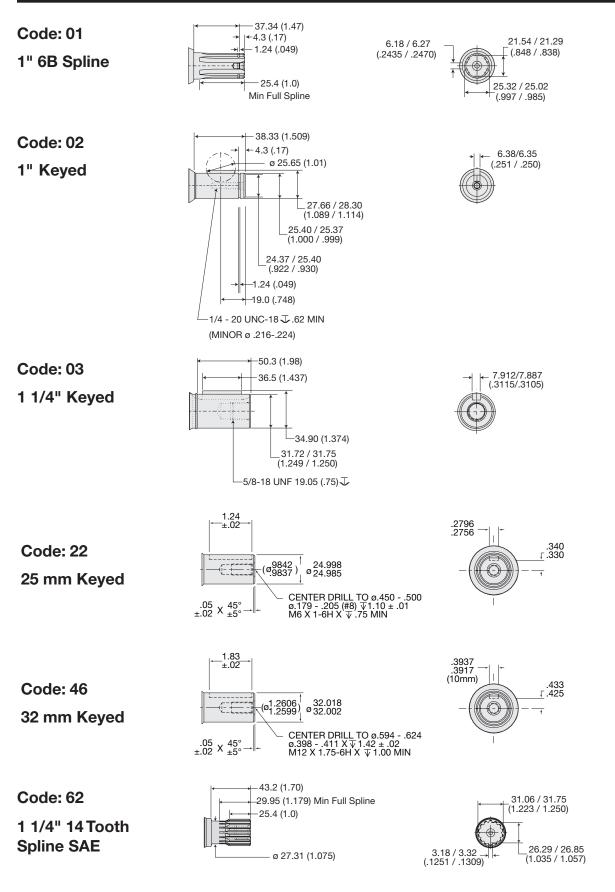
Code: ES

Modified SAE A 6-Bolt, 7/8-14 SAE O-Ring



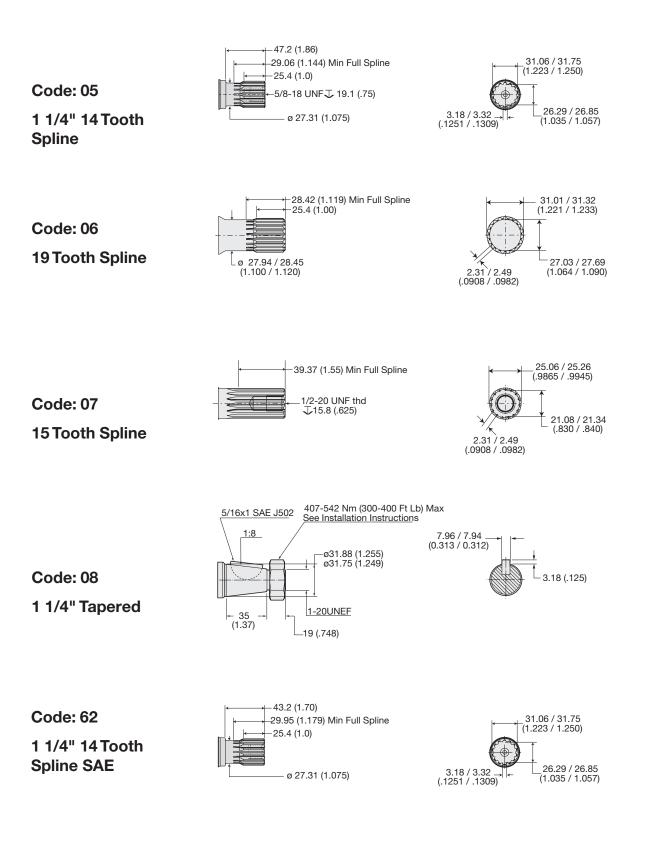
Code ES	disp.	0080	0100	0130	0140	0170	0195	0240	0280	0360	0405	0475
Weight/Gewich	t kg	13.6	13.6	13.8	13.9	14.2	14.5	14.9	15.2	16.0	16.5	17.2
Poids/Peso	(lb)	(29.9)	(30.0)	(30.5)	(30.7)	(31.3)	(31.9)	(32.9)	(33.5)	(35.2)	(36.4)	(37.9)
Length	"L" mm	184.7	184.7	187.7	189.5	192.5	195.8	200.4	205.2	214.9	218.9	227.6
	"L" (in)	(7.27)	(7.27)	(7.39)	(7.46)	(7.58)	(7.71)	(7.89)	(8.08)	(8.46)	(8.62)	(8.96)

English equivalents for metric specifications are shown in ().



🔥 WARNING

🛕 WARNING



🛕 WARNING

🛕 WARNING

🛕 WARNING

Hydraulic Formulas

$$HP_{in} = \frac{Q \triangle P}{1714}$$

$$HP_{out} = \frac{NT}{63025}$$

$$T = \frac{D \triangle Pe_m}{2 \pi}$$

$$Q = \frac{DN}{231 e_v}$$

Where

HP = Horsepower

Q = Flow, GPM

P = Pressure, PSI

P = Pressure differential across the motor

 $^{\Delta}\pi$ = 3.1416

D = Motor displacement, cubic inches per revolution

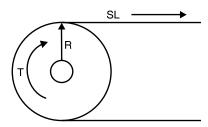
N = Shaft Speed, RPM

e_m = Mechanical efficiency

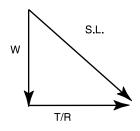
e_v = Volumetric efficiency

To Convert _	► Into	→ Multiply By
Into 룾	— To Convert 🔺	— Divide By
bars	pounds/sq.in.	14.5
BTU/min	horsepower	.02356
BTU/min	kilowatts	.01757
centigrade	fahrenheit	(C°x9/5)+32
centimeters	inches	.3937
cu. cms.	cu. inches	.06102
cu. cms.	liters	.001
cu. inches	cu.cms.	16.39
cu. inches	liters	.01639
feet	meters	.3048
gallons	cu. inches	231
gallons	liters	3.785
horsepower	kilowatts	.7457
inches	millimeters	25.4
kilograms	pounds	2.205
pounds	newtons	4.448
pound-inches	newton-meters	.113
pound-inches	daNM	.0113
radians	degrees	57.3
square inches	sq. cms.	6.452

026 Engineering Data.indd, js



Side Load


Side loads are imposed upon the shaft of a motor by:

- Driving the load through a pulley or gear
- Supporting the weight of a vehicle or other load on the shaft

Or both

If the load above requires torque T pound-inches and is driven with a pulley on the motor shaft a with a radius of R inches, the side load imposed on the motor shaft is T/R pounds. If the motor shaft is connected to a sprocket for a chain drive, R is one half the pitch diameter of the sprocket. If an external load with a weight of W pounds is also being supported by the motor shaft above, the total side load on the shaft is:

$$(SL)^2 = W^2 + (T/R)^2$$

Side Load(lb) = $\sqrt{W^2 + (T/R)^2}$

Warning

This Catalog is not a Controlled Document. All Dimensions listed herein are for reference only. Consult a Sales engineer for detailed information.

Engineering Data

Vehicle Propulsion Systems

Hydraulic motors are often used to drive off-highway vehicles, either directly or through gear reducers. The power required to propel the vehicle, called "Tractive Effort," is supplied by the hydraulic motor(s). It is normally expressed in pounds and is the sum of the forces below:

TE = (RR+GR+F+DP) x 1.1 Where:

RR = Rolling Resistance

GR = Grade Resistance

F = Acceleration Force

DP = Drawbar Pull

Definitions

• Tractive Effort (TE)

Tractive effort is the total linear force that a vehicle can exert on the ground. Sometimes called "rim pull," it is the axle torque divided by the distance from the axle to the surface it is traversing.

• Rolling Resistance (RR)

Rolling resistance is the force in pounds required to propel a vehicle at constant speed over level terrain. It varies with the weight of the vehicle and the type of surface it is traversing. Soft sand, for example, offers more resistance to movement than concrete.

RR = GVW x R where:

RR = Rolling Resistance (lbs.)

GVW = Gross Vehicle Weight (lbs.)

R = Rolling Resistance Factor dependent upon type and condition of surface. Typical "R" values are shown in the accompanying table.

Surface Type	Surface Condition	R Value
Concrete	Excellent	0.010 lb.
Concrete	Good	0.015 lb.
Concrete	Poor	0.020 lb.
Asphalt	Good	0.012 lb.
Asphalt	Fair	0.017 lb.
Asphalt	Poor	0.022 lb.
Macadam	Good	0.015 lb.
Macadam	Fair	0.022 lb.
Macadam	Poor	0.037 lb.
Cobbles	Ordinary	0.055 lb.
Cobbles	Poor	0.085 lb.
Grass		0.025 lb.
Snow		0.025 lb.
Snow	4 In.	0.037 lb.
 Dirt	Smooth	0.025 lb.
Dirt	Sandy	0.037 lb.
Mud		0.037 to 0.150 lb.
Sand	Level/Soft	0.060 to 0.150 lb.
	Dune	0.150 to 0.300 lb.

026 Engineering Data.indd, js

Engineering Data

• Grade Resistance (GR)

Grade resistance is the additional force required to move a vehicle up an incline. The grade of a slope is normally expressed as a percentage, and represents the number of feet of rise in 100 feet of length. A slope that rises 10 feet in 100 feet has a grade of 10%. The gradeability of a vehicle is defined as the maximum grade the vehicle can climb.

GR = 0.01 x GVW x G where:

GR = Grade Resistance (lbs.)

- GVW = Gross Vehicle Weight (lbs.)
- G = Grade(%)

The following table gives the approximate relationship between grade in percent and slope in degrees.

Grade (Percent) Slope (Degrees)

1%	0°	35'	
2%	1°	9'	
5%	2°	51'	
6%	3°	26'	-
8%	4°	35'	
10%	5°	43'	
12%	6°	54'	-
15%	8°	31'	
20%	11°	19'	
25%	1 4°	3'	-
32%	18°		
60%	31°		

• Acceleration Force (F)

The force required to accelerate a vehicle from an initial speed V_1 (in feet/second) to speed V_2 in T seconds is the accelerating force in pounds. If the acceleration is from rest, V_1 is zero.

$$F = \frac{V \times GVW}{T \times 32.16}$$
 where

026 Engineering Data.indd, js

V = Change in Velocity (ft. per Second) (Final Velocity - Initial Velocity)

GVW = Gross Vehicle Weight (lbs.)

- T = Time for Velocity Change (Seconds)
- Note To obtain velocity in feet per second when MPH is known, Multiply MPH by 1.467.

• Drawbar Pull (DP)

Drawbar Pull is the force a vehicle can exert on a load in addition to the force required to propel itself.

Actual force to tow or push a load can be calculated based upon Rolling Resistance, Accelerating Force and Grade Resistance of towed or pushed load.

• Motor Torque

The total Tractive effort required to propel a vehicle is the sum of the forces due to Rolling Resistance, Grade Resistance, Acceleration and Drawbar Pull plus 10% for friction and other variables:

$$TE = (RR + GR + F + DP) \times 1.1$$

When Tractive Effort has been calculated, hydraulic motor torque can be estimated by:

$$T = \frac{TE \times r}{G \times N}$$
 where:

T = Hydraulic Motor Torque (lbs. in.)

- TE = Tractive Effort
- r = Rolling Radius of Driven Tires (inches)
- G = Gear Reduction Ratio Between Hydraulic Motors and Driven Wheels (if none, use a value of 1)
- N = Number of Driving Motors

• Slip Torque

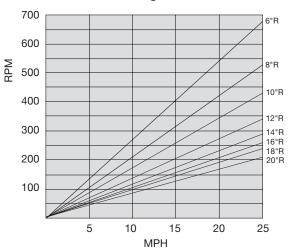
Slip torque is the torque at the motor shaft that will cause the wheels or tracks to break traction and skid. It is affected by the weight of the vehicle and the coefficient of friction between the wheels or tracks and the surface.

ST =
$$\frac{VW \times u \times r}{G \times N}$$
 where:

ST = Hydraulic Motor Slip Torque (lb in)

- VW = Maximum Weight on Driven Wheel (lb) Including: Allowable Vehicle Overload Dynamic Weight Shift.
- u = Coefficient of Friction Between Tire and Ground. (A value of 0.6 is used for "normal" tires and an average road surface)
- r = Rolling Radius of Driven Tires (inches)
- G = Gear Reduction Ratio Between Hydraulic Motors and Driven Wheel.
- N = Number of Driving Motors

Rolling Radius


The rolling radius should be based on actual application factors such as Plyrating, Rated Load and inflation pressure can result in different values.

• Hydraulic Motor Speed

$$S = \frac{168 \times V \times G}{r}$$
 where:

- S = Required Hydraulic Motor Speed (RPM)
- V = Desired Vehicle Velocity (MPH)
- G = Gear Reduction Ratio Between Hydraulic Motors and Driven Wheels (if none, use a value of 1)
- r = Rolling Radius of driven Tires (inches)

The chart below will estimate the wheel RPM -vs- vehicle velocity for various rolling radii.

026 Engineering Data.indd, js

Fluid

To insure maximum motor performance and life, use a premium grade hydraulic or engine oil. Fluids with a minimum of .125% zinc (or equivalent) anti-wear package should be used. A mineral or synthetic based 10W40 engine oil or hydraulic (200 SUS) is recommended. Torqmotor[™] seals come standard in nitrile rubber. If a fluid that is not compatible with nitrile is to be used, a fluoroelastomer seal material can be specified.

- Minimum fluid viscosity is 50 SUS
- Recommended fluid operating temperature is -28° C to 93° C (-20°F to 200° F)
- Filtration level is 20-50 micron nominal

Pressure

Operating the motor in its intermittent pressure range will shorten the life of the motor and should generally be restricted to 10% or less per minute. The reduced life resulting from continuous operation in the intermittent range may be acceptable in some applications. Consult the factory for details.

Shaft Loading

The use of 1 inch and 25mm diameter shafts are not recommended when torque loads exceed 3500 lb-in. 316 stainless shafts should be limited to 2000 lb-in. For 7/8 inch diameter shafts, torque should be limited to 1250 lb-in. Corrosion resistant Nitrotec shafts have reduced torque-carrying capability. Consult factory for values for specific shafts. The maximum thrust load on all shafts should not exceed 1000 lbs inward or outward.

Performance Data

Performance data shown in this catalog is the result of testing performed using 10W40 oil at 54°C (130°F), 200 SUS. Actual performance will vary with fluid conditions. Lower viscosity will produce lower performance.

Inlet Conditions

Positive pressure *must* be available at the motor inlet while it is rotating. If an overrunning load causes the motor to rotate faster than the pump can fill it, cavitation will occur. Consult the factory for inlet pressure requirements and speed limitations.

Other Operating Conditions

Consult factory before operating at conditions exceeding any ratings or recommendations in this catalog.

Installation Recommendations

- To avoid contamination do not remove plastic port plugs until fittings are to be installed.
- Motor mounting flange must make full contact with equipment mount; do not use the mounting bolts to force the motor pilot into the pilot hole to align the motor.
- Pulleys, sprockets, wheels, or couplings should be properly aligned on the shaft to avoid excessive radial or thrust loads.
- To avoid damaging the thrust system, do not hammer on the motor or shaft to install or remove couplings, pulleys, sprockets, etc.

Tapered Shaft

The tightening torque listed for a taper shaft nut is based on strength of the shaft and nut. Hub design and hub material determine the application tightening torque. Refer to hub manufacturers specifications to determine actual assembly torque. Factory suggested assembly torques are: 200-400 lb-ft (1.25, 1.5 & 1.75 Dia. Shafts), 175-225 lb-ft (1.0 dia. shafts).

To insure a sound hub to shaft coupling, the hub must conform to the full length of the shaft taper. This will prevent bending stresses at the keyway that could cause a fatigue failure.

Castle Nut

All motors ordered with Tapered shafts are equipped with patch locking nuts. If desired, a castle nut may be specified.

Paint

Unless specified otherwise, motors are shipped unpainted and coated with a rust inhibitor. Paint options are:

- * Single coat of black paint.
- * Single coat of black paint plus a coat of red oxide primer. (Double paint).

020 Installation-Operation.indd, js

Reverse Timed Manifold

All motors in this catalog are bi-rotational. The efficiency of the motors is essentially unaffected by direction of rotation.

The direction of output shaft rotation depicted below is that which will result from pressurizing the "A" port of the motor. Pressurizing the "B" port will cause shaft rotation in the opposite direction. Direction of rotation is as seen by looking directly at the shaft.

"Front ported" motors have the ports at the shaft end of the motor. "Rear ported" motors have the ports in the end cap of the motor. Standard motors are Rotation Code "0". Reverse timed motors are Rotation Code "1".

Series	Stan Code		Reverse Timed Code "1"		
	Front Ported	Rear Ported	Front Ported	Rear Ported	
TC, TB, TE, TJ	CW	CCW	CCW	CW	
TF, DF, TG, BG, DG, TH, BH	CCW	CW	CW	CCW	
ТК	N/A	CW	N/A	CCW	
110A	CW	N/A	N/A	N/A	
700, 716	CCW	N/A	N/A	N/A	

020 Installation-Operation.indd, js

Static Brake Only:

The brakes on these motors are designed for static use only, i.e., the brake should not be used to stop the motor and the motor should not be started while the brake is applied. These brakes are "parking" brakes only. Using the brake in a dynamic condition (while the motor is turning) will damage and reduce the holding capacity of the brake. If the brake does not hold because it has been damaged, personal injury or property damage could result.

Brake holding capacity and periodic test:

The brake holding capacity rating is based on actual holding capacity when new. If properly used as a static brake only, the holding capacity will slowly decrease with time. Since holding capacity will slowly decrease over time, a proper maintenance procedure should include periodically testing the holding capacity of the brake. This can be achieved by running a vehicle ramp test per OEM instructions.

Brake orientation:

This wet sump, multi-disk brake is designed to be mounted with the shaft in a horizontal position. If your application will have the motor in any other orientation, the motor should be thoroughly tested for longevity of brake holding capacity. This can be achieved by running a vehicle ramp test per OEM instructions after a predetermined number of brake actuations. Under no circumstances, however, should the motor be mounted with the shaft pointing vertically upward because the disks will not be operating within the oil sump and damage to the brake disks will occur.

Holding torque/brake release pressure:

The brake release port is designed for 3000 psi maximum. Limiting the pressure in that port to below 1500 psi is recommended to enhance seal life. The minimum pressure required to fully release the brake depends upon the holding torque of the brake.

BG Series	Holding Torque	Release Pressure
Standard	12,000 lb in	315 psi
Optional	6,000 lb in	160 psi
Optional	9,000 lb in	240 psi
Optional	16,000 lb in	405 psi

BH Series	Holding Torque	Release Pressure
Standard	16,000 lb in	315 psi

Initial use, bleeding not required:

Bleeding the brake is not required. It is recommended that the brake release port be filled with approximately 1.2 oz. (36cc) system oil prior to installation or first use.

Torque for mounting bolts:

Customer installed mounting bolts should be grade 8 and torqued to a minimum of 90 ft-lbs.

Brake service intervals:

The seals, springs and brake disc package should be periodically (how often depends on your application) inspected and replaced if damaged or worn. All should be replaced at least every 250,000 brake cycles or 3 years, whichever occurs first.

Standard Options

LSHT Torqmotors[™] and Nichols[™] Motors **Medium Duty Motors** HY13-1590-011/US,EU

	Availability				Code			
TF/DF	Clutch	TG/DG	TH	BG/BH	TL		Unpainted	Description
х	х	х	х	x	х	AAAA	AAAB	Black Paint
х	х	х	х	x	х	AAAC	-	Double Paint
X ⁹	х	X ¹⁵	X ¹⁵	X ¹⁵	Х	AAAF	AABP	Castle Nut
х	х	x	х	х	х	AAAG	AAAH	Fluorocarbon Seals
x	х	х	х	х	х	AAAJ	AAFG	High Temperature Commutator Seal
х	х	х	х	х		AABJ	AABK	Free Running Rotorset
X ¹⁰		X ¹⁰	X ¹⁰	х		AAAT	AAFX	Hot Oil Shuttle (11:00)
х		х				AANM	-	Seal saver for 1.25 taper shaft only
х				х		AANB	-	678 Nm (6000 in-lb) Holding Capacity
				х		AAMN	AANH	1808 Nm (16000 in-lb) Holding Capacity
X ^{9,10}		X ^{10,15}	X ^{10,15}	x	х	AAAU	AAGF	Bi-directional Shuttle (11:00*), Castle Nut
х		x	х	x	х	AAAW	-	Bi-directional Shuttle (11:00*), High Temperature Commutator Seal
х	х	x	х	x		AABL	AABM	Free Running Rotor Set & No Commutator Seal
х	x	x	х	x		AABT	-	No Nut
х		х	х	x	х	AACP	-	Free Running Rotor Set, Castle Nut
х	х	х	х	х	х	-	AADJ	High Temperature Commutator Seal, Castle Nut
х	х	х		х	х	AAFW	AAFA	Fluorocarbon (Viton) Seals, High Temperature Commutator Seal
х	х	х	х	х	х	-	AAFX	Bidirectional shuttle (11:00*)
х		х	х	х	х	AAHU	-	High Temperature Commutator Seal, No Nut
х		х	х	х	х	-	AAJL	No Nut
х		х	х	х	х	AALD	-	Bidirectional shuttle (1:00*), Castle Nut
х		х	х	х	х	AALE	-	Bidirectional shuttle (1:00*)
х		х	х	х		AALF	-	No Commutator Seal
х		х	х	х		-	AALP	Free Running Rotor Set, Fluorocarbon (Viton) Seals, High Temperature Commutator Seal
				х		AAML	-	(IBM) Bidirectional shuttle (11:00*), Castle Nut, 6 Brake Springs Installed
				х		AAMM	-	(IBM) Castle Nut, 6 brake springs installed, (9000 in-lbs hold cap)
				х		AAMN	-	(IBM) 'Yellow' brake springs (8), (16,000 in-lbs hold cap)
				х		AAMP	-	(IBM) 'Yellow' brake springs (8), (16,000 in-lbs hold cap), Castle Nut
X ¹⁰	х	X ¹⁰	X ¹⁰	X ¹⁰	х	BBBA	BBBM	69 Bar (1000 PSI) Internal Bidirectional Relief
X ¹⁰	x	X ¹⁰	X ¹⁰	X ¹⁰	х	BBBG	BBBJ	103 Bar (1500 PSI) nternal Bidirectional Relief
X ¹⁰	х	X ^{10,16}	X ^{10,16}	X ^{10,16}	х	BBBB	BBBN	138 Bar (2000 PSI) Internal Bidirectional Relief
X ^{10,12}	X ¹⁴	X ^{10,18}	X ^{10,18}	X ^{10,18}	х	BBBC	BBBF	207 Bar (3000 PSI) Internal Bidirectional Relief
X ^{10,13}	X ¹³	X ^{10,19}	X ^{10,19}	X ^{10,19}		BBBD	BBBW	276 Bar (4000 PSI) Internal Bidirectional Relief
X ^{10,11}	X ¹⁴	X ^{10,17}	X ^{10,17}	X ^{10,17}	х	BBDL	BBCG	2500 PSI Int Bidirectional Relief
х		х	х	х	х	-	BBCW	3000 PSI Int Bidirectional Relief, No Nut
х		х	х	х	х	BBCX	-	2500 PSI Int Bidirectional Relief, No Nut
х		х	х	x	х	-	BBDA	3000 PSI Int Bidirectional Relief, Castle Nut
x		х	х	х	х	-	BBDH	2500 PSI Int Bidirectional Relief, Castle Nut
X ¹⁰	х	х	х	x	х	BBDN	-	1750 PSI Int Bidirectional Relief
х	х	х	х	x	х	-	BBDP	725 PSI Int Bidirectional Relief
x		х	х	х		BBDW	-	725 PSI CCW Int Bidirectional Relief (045134)
х		х				FSAA	FSAB	Speed Sensor
x		х				FSAJ	FSAH	Int Short Speed Sensor, Castle Nut
x		х	х		<u> </u>	-	AAUY	Complete Motor Nickel Plated, 40 um, Except Shaft
	Consult factory for other positions and combinations.							
	Available only with shaft code 08 ¹⁴ Not available with displacements 0365							

⁹ Available only with shaft code 08 ¹⁰ Not available with ports code A, B or E

¹¹ Not available with displacement 0475
 ¹² Not available with displacements 0360, 0405 or 0475
 ¹³ Only available with displacement 0080

016 Medium Duty Options.indd, a

¹⁴ Not available with displacements 0365 ¹⁵ Available only with shaft codes 08 and 19

¹⁶ Not available with displacement 0960
 ¹⁷ Not available with displacements 0625, 0785 or 0960
 ¹⁸ Not available with displacements 0530, 0625, 0785 or 0960
 ¹⁹ Not available with displacements 0360, 0405, 0530, 0625, 0785 or 0960

2arke

🛕 WARNING

Code: AAAC

Double Paint — Base coat of red oxide primer and finish coat of black paint for increased corrosion resistance.

Code: AAAF* or AABP

Castle Nut — All motors ordered with Tapered shafts are equipped with patch locking nuts. If desired, a castle nut may be specified.

Code: AAAJ* or AAFG

High Temperature Commutator Seal — Under conditions of high temperature, it is suggested that a high temperature commutator seal be used.

Code: AAAG* or AAAH

Fluorocarbon — is available under various registered trademarks, including VITON[™] (a registered trademark of DuPont), FLUOREL[™] (a registered trademark of 3M) or FPM[™] (a registered trademark of DuPont).

Code: AABJ* or AABK

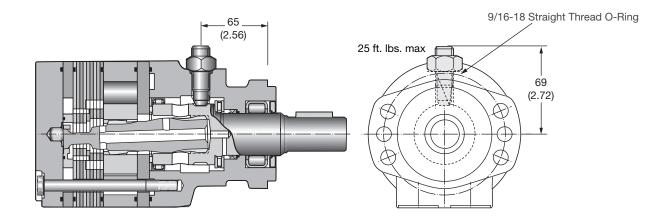
Free Running Rotorset — The "free running rotorset" is a specially dimensioned rotorset that allows for smoother operation at low flows and low pressure. Volumetric efficiency can be affected.

Code: AANM*

Seal Saver — Seal saver is a metal disc that presses onto the motor shaft, covering the dirt and water (D&W) seal. It's purpose is to aid in preventing external contamination from damaging the D&W seal.

* Option code shown is with a single black coat of paint.

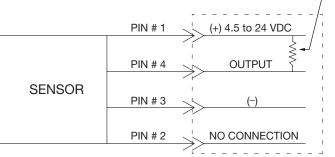
016 Medium Duty Options.indd, a



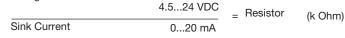
Code: FSAA* or FSAB

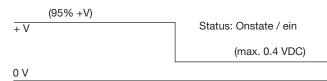
An Economical Sensor for Speed Readout

This rugged, weather resistant design is ideal for industrial and mobile applications. Applications include salt/ sand/fertilizer spreader drives, conveyer drives and injection molder compression drives. The sensor is a halleffect type, which when externally powered outputs 30 square wave digital pulses per coupling shaft revolution. The connector is a user friendly universally available 4 pin polarized M12 connector allowing for simplified field service. The integrated design does not effect the side load capacity or performance of the torque motor.


English equivalents for metric specifications are shown in (). 016 Medium Duty Options.indd, a

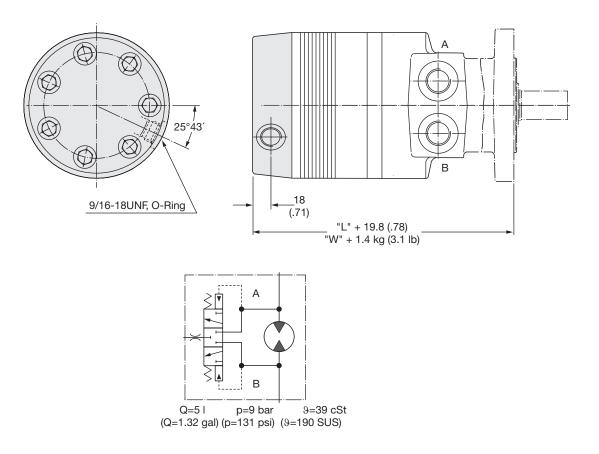
🛕 WARNING


Operating voltage range	4.524 VDC	2 1 N/C +
Operating temperature	-20° to 220° F -29°104° C	
Operating frequency range	010 KHZ	3 4 OUTPUT 4 Pin Polarized
Max sink current	0 20 mA (max.)	M12 Connector (Male) Cable and "Pull Up" Resistor
Connection	4 Pin Polarized (12mm)	are <i>not</i> supplied by factory.
Sensor output	30 Pulses per revolution which can be doubled electronically	
Output is NPN	Open Collector	



Pull-up Resistor Value Formula

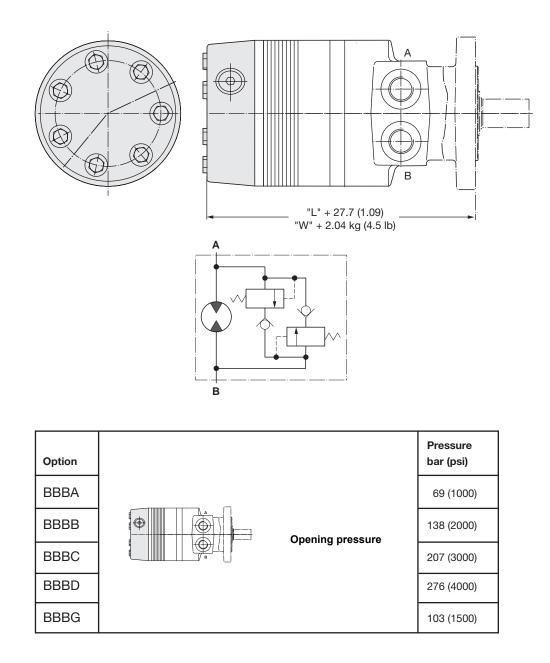
(0.25 Watt, Tol. 5%) Voltage


016 Medium Duty Options.indd, a

Code: AAFX or AAAT*

A Hot Oil Shuttle is used to continuously remove a portion of the fluid in a closed loop transmission or other closed loop system. At 125 PSI pressure differential between the motor return port and the shuttle outlet,1.5 GPM* will exit the circuit to cool, filter and return to the reservoir. The constant loop replenishment helps to keep heat and contamination from building up in the circuit. This option is not available with rear ports or integral cross over relief.

Standard Length & Weights for TF Series on Pages 131-136, TG Series on Pages 185-189 and TH Series on Pages 227-228. L


English equivalents for metric specifications are shown in (). 016 Medium Duty Options.indd, a

Code: BBBA*, BBBB*, BBBC*, BBBD* or BBBG*

This integrated internal relief valve is used for fixed pressure settings.

Internes Schockventil

Standard Length & Weights for TF Series on Pages 131-136, TG Series on Pages 185-189 and TH Series on Pages 227-228.

English equivalents for metric specifications are shown in (). 016 Medium Duty Options.indd, a

